Enrolment No.____ Seat No.: ____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (Old) EXAMINATION - WINTER 2019

Subject Name: Advanced Engineering Mathematics

Date: 22/11/2019

Total Marks: 70

Subject Code: 130002

(b)

(a)

Q.5

Time: 02:30 PM TO 05:30 PM

Ins	1. 2. 3.	ns: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	(i) Solve $ye^x dx + (2y + e^x) dy = 0$ (ii) Solve $(x + 1) \frac{dy}{dx} - y = e^{3x}(x + 1)^2$	03 04
	(b)	Obtain Fourier series of $f(x) = x^2$ in the interval $(0, 4)$.	07
Q.2	(a)	(i) Use method of Undetermined coefficients and find general solution of $y'' + 10y' + 25y = e^{-5x}$	07
	(b)	Find general solution of $(D^2 + 2D - 35)y = 37 \sin 5x$ OR	07
	(b)	Solve by Variation of parameter method $(D^2 + 9)y = tan3x$	07
Q.3	(a)	Find Fourier series of $f(x) = e^{ax}$ in $(0, 2\pi)$, $a > 0$	07
	(b)	Find Fourier series of $f(x) = \begin{cases} x & 0 \le x \le 2 \\ 4 - x & 2 \le x \le 4 \end{cases}$	07
Q.3	(a) (b)	Find the Series solution of $y'' - 2y' = 0$ Express the function $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$ as a Fourier sine integral and show that $\int_0^\infty \frac{\sin \omega x \sin \pi \omega}{1 - \omega^2} \ d\omega = \frac{\pi}{2} \sin x , 0 \le x \le \pi$	07 07
Q.4	(a)	(i) Find Laplace transform of $e^t (1 + \sqrt{t})^4$ (ii) Find the inverse Laplace transform of $\frac{2s+2}{s^2+2s+10}$	03 04
	(b)	State Convolution theorem and using it find inverse Laplace transform of $\frac{1}{(s-2)(s+2)^2}$	07
Q.4	(a)	OR (i) Find Laplace transform of $e^{-3t} u(t-2)$	03
νι	(u)	(ii) Find inverse Laplace transform of $\frac{e^{-2s}}{(s+4)^3}$	04
	(1.)	Calcalinated and the model are residued to the state of the state of	07

z = ax + by + ct(ii) Find Laplace transform of $f(t) = \begin{cases} \cos t & , 0 < t < 2\pi \\ 0 & , t > 2\pi \end{cases}$ 04

 $y'' - 3y' + 2y = 12e^{-2t}$, y(0) = 2, y'(0) = 6

Solve initial value problem using Laplace transform method

(i) Form Partial differential equation for the equation

07

03

(b) Solve
$$\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x + y$$

- OR
 (a) Find the Series solution of 4xy'' + 2y' + y = 0**Q.5 07**
 - Using method of Separation of variables solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ given that **07 (b)** $u(0, y) = 8 e^{-3y}$
