GUJARAT TECHNOLOGICAL UNIVERSITY

Subj	ect	BE - SEMESTER- III (OLD) EXAMINATION – SUMME Code:130002	R 2022 ate:08-07-2022
U		Name:Advanced Engineering Mathematics :30 PM TO 05:30 PM	Total Marks:70
Instru			
	2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a)	(i) Define Dirac – Delta function.	02
		(ii) Find the inverse laplace transform of in $\frac{s^2+1}{(s+1)(s-2)^2}$	05
	(b)	(8 - 1)(8 - 1)	07
Q.2	(a)	 (i) Find the fourier sine series of f(x) = e^xin 0 < x < π. (ii) dy/dx + 2y tanx = sinx 	03 04
	(b)	ux	$<\pi$.
		OR	
	(b)	Find the Fourier series for	07
		$f(x) = -\pi;$ $\pi < x < 0$ $f(x) = -\pi;$ $\pi < x < 0$	
		$= x - \pi; 0 < x < \pi$	
Q.3	(a)	(i) Find the value of $B(\frac{3}{2}, \frac{1}{2})$.	02
		(ii) Show that $\int_0^\infty \frac{\lambda^3 \sin \lambda x}{\lambda^4 + 4} d\lambda = \frac{\pi}{2} e^{-x} \cos x$, where $x > 0$.	05
	(b)	Solve $y'' + a^2y = tanx$ by using Variation of Parameters. OR	07
Q.3	(a)	(i) $ye^x dx + (2y + e^x) dy = 0$.	03
	(L)	(ii) $y''' - 3y'' + 3y' - y = 4e^t$ Using the payor, social method	04
	(D)	Using the power- series method, Solve $(1 - x^2)y'' - 2xy' + 2y = 0$	07
Q.4	(a)	(i) Find the Laplace transform of $\frac{e^{-t}sint}{t}$.	03
		(ii) Find the inverse Laplace transform of $\log(1 + \frac{w^2}{s^2})$.	04
	(b)	-12	07

OR

Q.4	(a)	(i) Solve $y''' - 6y' + 11y' - 6y = 0$.	03	
		(ii) $x^2y'' - xy' + y = \sin(\log x)$	04	
	(b)	Solve $y'' + 4y' + 3y = e^{-t}$, $y(0) = y'(0) = 1$.	07	
Q.5	(a)	(i) Solve $(y + z)p + (z + x)q = x + y$	03	
		(ii) $x^2ydx - (x^3 + xy^2)dy = 0$.	04	
	(b)	Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, where $u(x, 0) = 6e^{-3x}$ by method of separation	07	
		variables.		
	OR			
Q.5	(a)	(i) Form a Partial Differential Equation by eliminating the arbitrary constants from the	03	
		equation $z = (x - 2)^2 + (y - 3)^2$	04	
		(ii) Solve $(D^2 - 2DD' + D'^2)z = e^x + 2y + x^3$		
	(b)	Solve $y'' + 2y' + 4y = 2x^2 + 3e^{-x}$ by using method of	07	
		Undetermined coefficients		
