Seat	N_0 .	
Scal	INU	

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (OLD) EXAMINATION - SUMMER 2021

Su	bject	Code:130002 Date:03/09/2021	
Ti	me:1 tructio	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	0
Q.1		(i) Solve $\frac{dy}{dx} = \sin(x + y)$.	03
	,	(ii) Solve $(1 + x^2) \frac{dy}{dx} + y = e^{tan^{-1}x}$.	04
	(b)	Solve the differential equation $\frac{d^2y}{dx^2} + x^2y = 0$ by Power method at $x = 0$.	0'
Q.2	(a)	Solve the partial differential equation $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ subject to condition	0′
	(b)	$u(0,y) = 3e^{-y} - 5e^{-5y}$ by method of Separation Variables. Solve the differential equation by Frobenius method $x(x-1)y'' + (3x-1)y' + y = 0.$ OR	0′
	(b)		03 04
Q.3	(a) (b)	Find the Fourier series for the function $f(x) = x + x^2$, $-\pi < x < \pi$. Obtain Fourier series for the function $f(x) = x + 1$, $-1 < x < 0$ = x - 1, $0 < x < 1$.	0': 0':
		OR	
Q.3	(a)	Express $f(x) = e^x$, $0 < x < l$ as a half range Fourier Cosine series with period $2l$.	0′
	(b)	Find the Fourier series of $f(x) = \sqrt{1 - \cos x}$ in the interval $[0, 2\pi]$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{4n^2-1} = \frac{1}{2}$.	0'
Q.4	(a)	(i) State the change of scale property of Laplace Transform. If $L\{f(t)\} = \frac{s}{s^2 - k^2}$. find $L\{f(3t).\}$	03
		(ii) Find the Laplace Transform of $\frac{e^{-2t}\sin(2t)\cosh(t)}{t}$.	04
	(b)	Find the Inverse Laplace Transform of (i) $\frac{3s+7}{s^2-2s-3}$ (ii) $ln\left(1+\frac{1}{s^2}\right)$	0'
Q.4	(a)	OR Solve the initial value problem $y'' + 2y' + y = e^{-t}$, $y(0) = -1$, $y'(0) = 1$ by	0'
	(b)	using Laplace transform method. (i) Find Laplace Transform of $tsin^2 3t$.	0.
		(ii) State convolution theorem. Use it to find Inverse Laplace Transform of	0.

Q.5 (a) (i) Form the partial differential equation by eliminating the arbitrary function from z = f(x² - y²).
(ii) Solve (D² - 2DD' + D'²)z = e^{x+2y}.
(b) (i) Solve p² + q² = x + y.
(ii) Solve (mz - ny)p + (nx - lz)q = ly - mx.
OR

Q.5 (a) (i) Solve $z = px + qy + n\sqrt{1 + p^2 + q^2}$. (ii) Solve $(D^2 + 3D + 2)y = e^{2x}sinx$. (b) (i) Define Heaviside's function (ii) Express the function f(x) = sinx, $0 \le x \le \pi$ = 0, $x > \pi$ as a Fourier sine Integral.
