Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III(NEW) EXAMINATION - WINTER 2022

6-02-2023
(

Subject Name: Advance Engineering Mathematics

Time:02:30 PM TO 05:30 PM	Total Marks:70
---------------------------	----------------

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS Q.1 (a) Solve $(y^2 - x^2)dx + (2xy)dy = 0$ 03 **(b)** Solve $x^2 \frac{dy}{dx} + xy = x^4 y^6$ 04 (c) Solve $y'' + 2y' + 5y = e^{-t} \sin t$, y(0) = 0, y'(0) = 1 using Laplace **07** transform. **Q.2** (a) Solve $\frac{d^4y}{dx^4} + 4y = 0$. (b) Solve $y'' + 4y = \sin 3x$. 03 04 (c) Find the Fourier series of $f(x) = x + x^2$ in $-\pi < x < \pi$. 07 (c) Find the Fourier series for the function 07 $f(x) = \begin{cases} -\pi; & -\pi < x < 0 \\ x; & 0 < x < \pi \end{cases}.$ **Q.3** (a) Find $L\{\sin(3t+2)\}$. 03 **(b)** Find $L^{-1}\left\{\frac{1}{(s+1)(s^2+1)}\right\}$. 04 (c) Find the power series solution of $y'' + x^2y = 0$. 07 OR **Q.3** (a) Find $L\{t sinh 3t\}$. 03 **(b)** Find $L^{-1}\left\{tan^{-1}\left(\frac{2}{s}\right)\right\}$. 04 (c) Using the method of variation of parameters, solve 07 $y'' - 4y' + 4y = \frac{e^{2x}}{x}.$ **Q.4** (a) Solve $y'' + 6y + 9y = e^{3x}$. (b) Solve $(D^3 - D^2 - 6D)y = x^2 + 1$. 03 04 (c) Using convolution theorem find the inverse Laplace transform of **07** OR **Q.4** (a) Find the convolution of t and e^t . 03 04

Q.5 (a) Solve
$$z = px + qy + \sqrt{1 + p^2 + q^2}$$
.
(b) Solve $p(1 + q) = qz$.

(c) Solve $\frac{\partial^2 z}{\partial x^2} - 4 \frac{\partial^2 z}{\partial y^2} = \cos 2x \cos 3y$. **07**

Q.5 (a) Form the partial differential equation from $z = f\left(\frac{x}{y}\right)$. 03

04

(b) Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$ given that $z = e^y$, $\frac{\partial z}{\partial x} = 1$ when x = 0. (c) Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$ given $u(x, 0) = 6e^{-3x}$. **07**
