Seat No.: _____

Enrolment No._____

Total Marks:70

GUJARAT TECHNOLOGICAL UNIVERSITY

Subject Name: Advance Engineering Mathematics

Time:10:30 AM TO 01:30 PM

BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2021 Subject Code:2130002 Date:15-02-2022

Instru			
		Attempt all questions.	
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
		Simple and non-programmable scientific calculators are allowed.	
		2	
			MARKS
Q.1	(a)	Solve $yy' - 2x = 0$.	03
۷.1			04
	(~)	Find $L^{-1}\left[\frac{2s+1}{s(s+1)}\right]$.	~ -
	(c)	Expand $f(x) = \frac{1}{2}(\pi - x)$ as a Fourier series in the interval $(0,2\pi)$.	07
Q.2	(a)	Define unit step function and rectangle function.	03
_	(b)	Solve $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 12e^x$.	04
	(a)	core core	07
	(c)	Find a power series solution of $y'' + xy = 0$ about the ordinary point $x = 0$.	07
		OR	
	(c)	Find the Fourier series of	07
	(-)		
		$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$	
Q.3	(a)	Find $L\left[\int_0^t \int_0^t sinat \ dt \ dt\right]$.	03
		Solve $(D^2 + 9)y = \sin 2x + \cos 4x$.	04
	(c)		07
		Find the inverse Laplace transform of $\frac{1}{(s^2+4)^2}$ by Convolution theorem.	
		OR	
Q.3	(a)	Solve $\frac{dy}{dx} + 2ytanx = sinx$.	03
			04
	(6)	Find $L^{-1}\left[\frac{6+s}{s^2+6s+13}\right]$.	04
	(c)	Solve $y'' + 4y = 8x^2$ by method of undetermined coefficients.	07
Q.4	(a)	Find the half range sine series of $f(x) = e^x$ in	03
		$0 < x < \pi$.	
	(b)	Find the Laplace transform of	04
		1) te^{-t}	
		2) $e^{-at}cosbt$.	0=
	(c)	Solve $y'' + y = cosecx$ by method of variation of parameters. OR	07
Q.4	(a)		03
٧٠٠	(44)	Find the Laplace transform of $\frac{\sin 2t}{t}$.	
	(b)	Solve $(D^2 + 10DD' + 25D'^2)z = e^{3x+2y}$.	04
	(c)	Solve by Laplace Transform $y' + 2y = e^{-3t}$ with $y(0) = 1$.	07
~ -			0.4
Q.5	(a)	Form a partial differential equation for the equation $z = (x-3)^2 + (y-4)^2$.	03

(b)	Solve $p - x^2 = q + y^2$.	04
(c)	Solve $z = pq$ by Charpit's method.	07
	OR	
(a)	Solve $z = px + qy - 2\sqrt{pq}$.	03
(b)	Solve $xp + yq = 3z$.	04
(c)	Solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, given that $u(0,y) = 8e^{-3y}$ by the method of separation of variables.	07
	(c) (a) (b)	(a) Solve $z = px + qy - 2\sqrt{pq}$. (b) Solve $xp + yq = 3z$. (c) Solve $\frac{\partial u}{\partial x} = 4\frac{\partial u}{\partial y}$, given that $u(0, y) = 8e^{-3y}$ by the method of
