Subject Name:Advance Engineering Mathematics

Subject Code:2130002

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III EXAMINATION - SUMMER 2025

Date:11-06-2025

	Time:02:30 PM TO 05:30 PM Instructions: 1. Attempt all questions. Total Marks:7		
		 Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. 	MARKS
Q.1	(a)	Solve $\frac{dy}{dx} + (cotx)y = 2cosx$	03
	(b)	Give Beta and Gamma function relationship and find $\beta(\frac{9}{2}, \frac{7}{2})$	04
	(c)	Give the Statement of Convolution Theorem and find the Inverse Laplace transform of $\frac{s+2}{s^2(s+3)}$	07
Q.2	(a)	Check the Exactness of	03
	(b)	$(x^{3} + 3xy^{2})dx + (3x^{2}y + y^{3})dy = 0$ Solve $\frac{dy}{dx} + \frac{2y}{x} = x^{2}y^{2}$	04
	(c)	Find the Fourier Series of $f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}$	07
		OR	
	(c)	Solve the Initial –Value problem using Laplace transform $y'' + 3y' + 2y = e^t$, $y(0)=1$, $y'(0)=0$	07
Q.3	(a)	Using the definition of Laplace transform prove that $(1)L(t^n) = \frac{n!}{s^{n+1}} \qquad (2)L(e^{-at}) = \frac{1}{s-a}$	03
	(b)	Form the partial differential equation of $z = f(\frac{x}{y})$	04
	(c)	Using Method of Variation of parameter solve $(D^2 + 4)y = tan2x$ OR	07
Q.3	(a)	Find $L(te^{4t}cos2t)$	03
	(b)	Using Partial differential equation eliminate the function f from the relation $f(xy + z^2,x+y+z)=0$	04
	(c)	Using Method of Undetermined coefficient solve $(D^2 - 2D)y = e^x(\sin x)$	07
Q.4	(a)	Find the Fourier Sine series of $f(x) = 2x$ in $0 < x < 1$	03
•	(b)	If $L(f(t)) = \log(\frac{s+3}{s+1})$ find $L(f(2t))$ using change of scale property of Laplace	04
	(c)	transform. Solve $(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$	07

Q.4	(a)	OR Find the Fourier Cosine integral of $f(x) = \frac{\pi}{2}e^{-x}$, $x \ge 0$	03
	(b)	State First Shifting theorem of Laplace transform and using it find $L(e^{-3t}t^4)$	04
	(c)	Using Cauchy-Euler equation $x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} + y = \sin(\log x)$	07
Q.5	(a)	Find the general solution to the partial differential equation $xp + yq = x - y$	03
	(b)	Solve $\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \cdot \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x + y$	04
	(c)	Discuss about ordinary point ,singular point and its types for the differential equation $x^3(x-1)y'' + 3(x-1)y' + 7xy = 0$	07
		OR	
Q.5	(a)	Solve $p(1+q) = qz$	03
	(b)	Solve $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial^2 x \partial y} = 2e^{2x}$	04
	(c)	Find the Power Series solution of $(1 + x^2)y'' + xy' - 9y = 0$	07
