GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III EXAMINATION - SUMMER 2020

Subject Code: 2130002 Date:26/10/2020

Subject Name: Advanced Engineerng Mathematics

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Solve $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}.$	03
	(b)	Solve $\frac{dy}{dx} + 2xy = 2e^{-x^2}$.	04
	(c)	State convolution theorem and use it to find $L^{-1}\left[\frac{1}{(s^2+a)^2}\right]$.	07
Q.2	(a)	Solve $y'' - 3y' + 2y = e^x$.	03
	(b)	Find Fourier series for $f(x) = x^2$; $-\pi \le x \le \pi$.	04
	(c)	Find a power series solution of $y'' + y = 0$ near the ordinary point $x=0$.	07
		OR	.=
	(c)	Find Fourier series in the interval $(0,2\pi)$ if $f(x) = \begin{cases} -\pi & 0 < x < \pi \\ x - \pi & \pi < x < 2\pi \end{cases}$ and hence show that $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$.	07
Q.3	(a)	Find $L^{-1}\left[\frac{e^{-3s}}{s^2}\right]$.	03
	(b)	Solve $y''-4y'-12y = \sin x$ by method of undetermined	04
		coefficient.	
	(c)	Solve $y''+y = \sec x$ by using method of variation of parameters.	07
Q.3	(a)	Solve $\frac{d^3y}{dx^3} - 3\frac{dy}{dx} + 2y = 0.$	03
	(b)	Solve $(D^2 - D - 2)y = \sin 2x$.	04
	(c)	Solve by Charpit's method $p = (z + qy)^2$.	07
Q.4	(a)	Find $L e^{-t}\sin^2 t $.	03
•	(b)	Find $L^{-1} \left[\frac{3}{s^2 + 6s + 18} \right]$.	04
	(c)	Solve $y''-y'-2y=0$; with $y(0)=1$, $y'(0)=0$ by using Laplace	07

1

transform.

		OR	
Q.4	(a)	Solve $ (x^4 + y^4) dx - xy^3 dy = 0. $	03
	(b)	Find cosine series for $f(x) = e^x$ in $0 < x < L$.	04
	(c)	Find Fourier series for $f(x) = 3x(\pi^2 - x^2)$ in $-\pi < x < \pi$.	07
Q.5	(a)	Solve $pq = 1$.	03
	(b)	Solve $p^2 - x = q^2 - y$.	04
	(c)	Find a series solution of $y'' + xy' + y = 0$ near the ordinary point $x=0$.	07
		OR	
Q.5	(a)	Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ given that $\frac{\partial z}{\partial y} = -2 \sin y$ when $x = 0$	03
		and $z = 0$ when y is an odd multiple of $\frac{\pi}{2}$.	
	(b)	Solve $r-2s+t=\sin(2x+3y)$.	04
	(c)	Solve $(p^2 + q^2)x = pz$.	07
