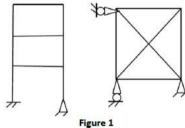
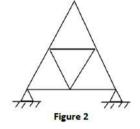
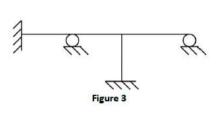
GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (OLD) EXAMINATION - WINTER 2018

Subject Code:130604 Date:05/12/2018


Subject Name:Structural Analysis-I


Time:10:30 AM TO 01:00 PM Total Marks: 70


Instructions:

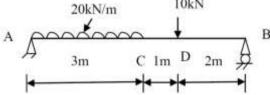
1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Give advantages & disadvantages of statically indeterminate structures Determine Structural indeterminacy of the structures shown in figure:

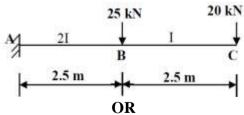
(b) Explain Maxwell's theorem of reciprocal deflections

07

07


07

07


- **Q.2** (a) Write the assumptions made in the theory of torsion. A solid shaft is 100 mm in diameter, transmits 120kW at 200 rpm. Find the maximum intensity of shear stress induced and angle of twist for a length of 6 meters. Take $C = 8 \times 10^4 \text{ N/mm}^2$
 - (b) Define 1) Thin cylinder 2) Thick cylinder 3) Hoop stress 4) Longitudinal stress A thin cylindrical shell with internal diameter 150mm and wall thickness 15mm is subjected to a steam pressure 12 N/mm². Find circumferential and longitudinal stresses in the shell material.

OR

- (b) A thin cylindrical shell of internal diameter 1200mm, wall thickness 12mm and length 3000mm, is subjected to internal pressure 1.5 N/mm². Find the circumferential and longitudinal strains developed and hence find the increase in capacity of the shell.
- Q.3 (a) Using Macaulay's method calculates slope at point C and deflection at point D for a simply of supported beam as shown in figure. Take EI=Constant

(b) Find slope and deflection at point C for the beam shown in figure using Conjugate beam method. **07** Take EI =20000 KN-m²

- Q.3 (a) Define and Explain core and Kernel of a section with suitable example. Draw 'Core' for the (a) 07 Rectangular section (b) Hollow circular section.
 - (b) A masonry dam 6.0 m high has 1.2 m top width and 3.0m base width. It retains water on its vertical face for its total height. Assume the density of the masonry to be 17 KN /m³ and density of water as 10kN/m³, find out maximum and minimum pressure intensities at the base.

Q.4	(a)	Define strain energy, proof resilience and modulus of resilience, Resilience. Derive formula for strain energy due to Sudden Loading.	07
	(b)	An axial pull of 50KN is suddenly applied to a steel bar 2m long and 100mm ² in cross section. If modulus of elasticity of steel is 200kN/mm ² find 1) maximum instantaneous stress, 2) maximum instantaneous extension, 3) strain energy, 4) modulus of resilience.	07
0.4	(a)	OR Define Inflyence line Weite the immentance of Inflyence line diagram	07
Q.4	(a) (b)	Define Influence line. Write the importance of Influence line diagram. A simply supported beam AB has a span of 8m. Draw influence lines for R _A , R _B , V _X & M _X for a section3m from left end support.	07
Q.5	(a)	Differentiate between column and strut. State assumptions and limitations of Euler's formula.	07
	(b)	State assumptions and limitations of Euler's formula. A hollow rectangular column having outside dimensions 200mmx150mm and inside dimensions 1500mmx100mm. Its length is 6m and is fixed at both the ends. Find Euler's crippling load. Take $E=2x10^5 N/mm^2$	07
		OR	
Q.5	(a) (b)	Write advantages of Three Hinge parabolic arch over a simply supported beam A three hinged parabolic arch has a span of 20 m and a central rise 3m. It carries a point load of 10 KN at 7.5 m from the left hinge. Find normal thrust, shear and BM at section 7.5m from right end hinge. Also calculate maximum positive and negative bending moments and their positions.	07 07
