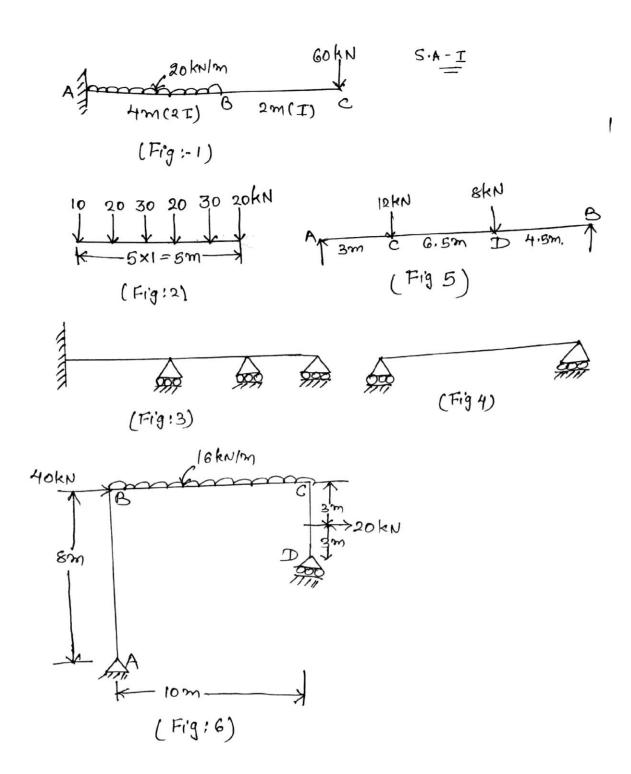
Seat 1	No.: _	Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III(OLD) EXAMINATION – SUMMER 2019	
Sub	ject	Code: 130604 Date: 11/06/2019	
Sub	ject :	Name: Structural Analysis-I	
Tim	e: 02	2:30 PM TO 05:00 PM Total Marks: 70	
Instr			
		Attempt all questions. Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
Q.1	(a)	Differentiate static and kinematic indeterminacy. Also explain these terms with	07
	(b)	respect to fixed beam. A cylindrical shell of length 3 m and internal diameter 1m has a thickness of 12 mm. If the shell is subjected to an internal pressure of 1 N/mm², find circumferential & longitudinal stresses, maximum shear stress, and the change in the volume. Take $E=200 \ x \ 10^3 \ N/mm²$, $\mu=0.27$.	07
Q.2	(a)	(1) Define: Strain energy, modulus of resilience, Influence line(2) Derive an expression of slope at supports for the simply supported beamSubjected to point load at the centre of the beam by conjugate beam method.	07
	(b)		07
	(b)	021	07
Q.3	(a)	A simple support beam has span of 20m and loaded by a train of wheels as shown in the fig 2. Calculate the maximum bending moment and shear force induced at 8m from left support.	07
	(b)		07
Q.3	(a)		07
	(b)		07
Q.4	(a)	A simply supported beam loaded as shown in fig 5. If for the beam $I = 160 \times 10^6 \text{ mm}^4$ and $E = 200 \text{ GPa}$. Calculate the deflection under loads using Macaulay's method.	07
	(b)	Draw S.F.D & B.M.D & axial force diagram for the rigid jointed portal frame	07

OR


Q.4 (a) A suspension cable having the left support is 4.75 m above the right support has a span of 50m and a maximum dip of 6m. The cable is loaded with a uniformly distributed load of 28 kN/m throughout its length. Find the maximum tension in the cable.

shown in fig 6.

(b) Differentiate between statically determinate structures and statically 07

		indeterminate structures.	
Q.5	(a)	Derive the expression for longitudinal stress for a thin cylindrical vessel subjected to internal fluid pressure p .	07
	(b)	Draw core diagrams with formulas for rectangular and circular sections.	07
		OR	
Q.5	(a)	A short column rectangular section $250 \text{mm} \times 200 \text{mm}$ is subjected to a load of 400KN at a point 50 mm from longer side and 100 mm from shorter side. Find maximum and minimum stresses in the column.	07
	(b)	Derive Euler's formula for column with both ends are hinged.	07
	\ · /	ϵ	-

indeterminate structures. Also give advantages and disadvantages of
