GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION - WINTER 2024

Subject Code:3150912 Date:02-12-2024

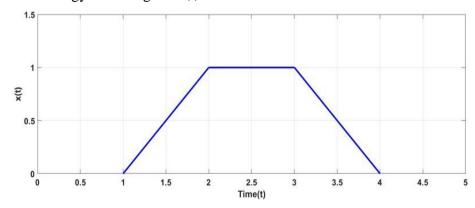
Subject Name: Signals and Systems

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1 (a) Check linearity of a system described by $y[n] = x[n] + \frac{1}{2x[n-2]}$


- (b) Prove commutative, distributive and associative properties of convolution integral 04
- (c) Convolve $x[n] = \{-1, 4, 3, 2, -2\}$ and $h[n] = \{1, 2, -1, 1\}$
- Q.2 (a) Define (i) Periodicity of a signal (ii) Non-causal signals (iii) Even signal and give example of each
 - (b) Check stability of a system described by $y[n] = x[n] + \frac{1}{2}x[n-1] + \frac{1}{4}x[n-2]$
 - (c) Given impulse response of the system $h(t) = e^{-2t}u(t)$. Obtain the output of the system for $x(t) = e^{-4t}[u(t) u(t-2)]$

OR

- (c) Given impulse response of the system h(t) = u(t-3). Obtain the output of the system for x(t) = u(t+2)
- Q.3 (a) Check causality of a system described by $y(t) = \int_{-\infty}^{3t} x(\tau) d\tau$
 - (b) State and prove linearity and convolution property of z- transform 04
 - (c) Find Fourier transform of $x[n] = 2^n \sin[(\pi/4)n]u[-n]$ 07

OR

- Q.3 (a) State Dirichlet conditions for existence of Fourier transform 03
 - (b) Obtain the energy of the signal x(t) shown below 04

Marks

	(c)	Obtain Fourier transform of (a) $x(t) = e^{-2(t-1)}u(t-1)$ (b) $x(t) = \delta(t+2) + \delta(t-2)$	07
Q.4	(a)	Prove the nonexistence of Fourier series co-efficients a_0 and a_n for a periodic waveform with odd symmetry	03
	(b)	Obtain Laplace transform of $x(t) = e^{-at}u(t)$ by direct integration.	04
	(c)	Explain zero order hold with its mathematical representation. Write at least three advantages and disadvantages of zero order hold	07
		OR	
Q.4	(a)	Compare Fourier series and Fourier transform	03
	(b)	Obtain Laplace transform of $x(t) = (e^{2t} - 2e^{-t})u(t)$	04
	(c)	Explain aliasing by taking a suitable example	07
Q.5	(a)	Explain signal reconstruction from its sampled form	03
	(b)	State and prove the final value theorem	04
	(c)	List at least four types of actuators used with Arduino with their application	07
		OR	
Q.5	(a)	State and explain sampling theorem	03
	(b)	State the properties of ROC of z-transform	04
	(c)	List at least seven types of sensors used with Arduino with their application in brief	07
