Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V(NEW) EXAMINATION - SUMMER 2022

Subject Code:3150912 Date:07/06/2022

Subject Name:Signals and Systems

Time:02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	Explain odd and even signals with diagram.	03
	(b)	Define the following: Energy signal, Causal System, Analog signal, Periodic signal.	04
	(c)	Explain the Standard / Elementary signals in signal processing in continuous and discrete time.	07
Q.2	(a)	A 100 Hz sinusoid x(t) is sampled at 240 Hz. Has aliasing occurred? Also state the minimum sampling frequency.	03
	(b)	What is a system? Explain different types of system in brief.	04
	(c)	Determine whether the following system given as $y(t)=10x(t)+5$ is static, causal, linear, time invariant and stable.	07
		OR	a -
	(c)	For LTI system with unit impulse response $h(t)=e^{-2t}u(t)$, determine output to the input $x(t)=e^{-t}u(t)$.	07
Q.3	(a)	Find Z transform for sequence $x(n)=\{1,2,4,5,0,7\}$ and specify ROC.	03
_	(b)	Explain trigonometric fourier series with all equations.	04
	(c)	Sketch the following signals if $x(n) = \{1,1,1,1,1,1/2\}$	07
		1. $x(n-4)$ 2. $x(n).u(2-n)$ 3. $x(n-1) + \delta(n-3)$ OR	
Q.3	(a)	State and prove the time shifting property of Fourier transform.	03
	(b)	Find Fourier transform of unit step function.	04
	(c)	Find inverse Z transform of $X(z)=1$ / $(1-1.5z^{-1}+0.5z^{-2})$ for 1. ROC: $ z > 1$, 2. ROC: $ z < 0.5$.	07
Q.4	(a)	Find the energy or power of the signal $x(n)=u(n)$.	03
	(b)	Explain any two properties of convolution sum.	04
	(c)	Find the linear convolution of : $x(n) = \{1,1,1,1\}$ and $h(n) = \{2,2\}$	07
		using basic convolution equation or graphical method.	
0.4	(.)	OR	02
Q.4	(a) (b)	Define Laplace transform and prove its linearity property. Obtain Fourier transform of a rectangular pulse given as:	03 04
	(b)	obtain Fourier transform of a rectangular pulse given as : $x(t) = A rect(t/T)$.	V 4
	(c)	The difference equation of system is given as below:	07
		y(n)=0.5y(n-1)+x(n). Determine the system function and the impulse response h (n) of the system.	

Q.5	(a)	Find Z transform of $x(n)=(1/3)^n u(n)$ and also sketch its ROC.	03
	(b)	State and prove any two properties of Z transform.	04
	(c)	Give equation for Z transform. What is ROC for Z transform? State	07
		the properties of ROC.	
		OR	
Q.5	(a)	State and explain sampling theorem with necessary equations.	03
	(b)	Explain any three sensors used in Internet of Things.	04
	(c)	Find Z transform of $x(n) = cos(\omega n) u(n)$	07
