GUJARAT TECHNOLOGICAL UNIVERSITY ## BE- SEMESTER-I&II EXAMINATION – SUMMER 2025 | Subject Code:BE01000081 | Date:09-06-2025 | |-------------------------|-----------------| |-------------------------|-----------------| **Subject Name:Basic Mechanical Engineering** | Time:10:30 AM TO 01:00 PM | Total Marks:70 | |---------------------------|----------------| |---------------------------|----------------| ## **Instructions:** - 1. Attempt all questions. - 2. Make suitable assumptions wherever necessary. - 3. Figures to the right indicate full marks. - 4. Simple and non-programmable scientific calculators are allowed. | (a) | Discuss Closed, Open and Isolated Thermodynamic system with neat sketch. | Marks
03 | |------------|---|---| | (b)
(c) | Explain different between renewable and non-renewable energy. Derive the characteristics gas equation for a perfect gas with usual notations. | 04
07 | | (a) | State and explain zeroth law of thermodynamics and First law of thermodynamics. | 03 | | (b) | With usual notations prove that $Cp - Cv = R$. | 04 | | (c) | Write a difference between SI engine and CI engine. OR | 07 | | (c) | A sample of wet steam at pressure of 15 bar has a dryness fraction of 0.06. determine the enthalpy, volume, entropy and internal enthalpy per kg. | 07 | | (a) | What is dryness fraction? Also state its importance. | 03 | | (b) | List essential qualities of a good boiler. | 04 | | (c) | One kg of air at 7 bar pressure and 90° C temperature undergoes a non-flow process. The law of expansion is $PV^{1.1}$ =C. the pressure falls to 1.4 bar during process calculate (1) the final temperature (2) work done (3) Change in internal energy (4) Heat exchange. Take R= 287 J/kg.K and γ =1.4 for air. OR | 07 | | (a) | What is priming? Why priming is required in centrifugal pump? | 03 | | (b) | List different mountings of boiler and explain any one in brief. | 04 | | (c) | With usual notation derive the expression for air standard efficiency of diesel cycle. | 07 | | (a) | What is the difference between rigid coupling and flexible coupling? | 03 | | (b) | Explain working of Vapor absorption refrigeration system with neat sketch. | 04 | | (c) | One kg of an ideal gas is heated from 18° C to 98° C assuming R=0.27 KJ/kgK and γ=1.18 for gas calculate (1) specific heats (Cp and Cv) (2) Change in internal energy (3) change in enthalpy. | 07 | | (a) | Write the function of following I.C. Engine components: | 03 | | (b) | Define the terms: Hardness, Toughness, Ductility, Elasticity | 04 | | (c) | It is required to find out the efficiency of an air standard Carnot Cycle with the following data. Minimum temperature of cycle 15 ⁰ C, minimum pressure in cycle 1 bar. Pressure after isothermal compression 3.5 bar. Pressure after isentropic compression 10.5 bar. Assume R=0.287 KJ/kgK for air. What power would be produced if engine makes 2 cycles/second. | 07 | | | (a) (b) (c) | (b) Explain different between renewable and non-renewable energy. (c) Derive the characteristics gas equation for a perfect gas with usual notations. (a) State and explain zeroth law of thermodynamics and First law of thermodynamics. (b) With usual notations prove that Cp – Cv= R. (c) Write a difference between SI engine and CI engine. OR (c) A sample of wet steam at pressure of 15 bar has a dryness fraction of 0.06. determine the enthalpy, volume, entropy and internal enthalpy per kg. (a) What is dryness fraction? Also state its importance. (b) List essential qualities of a good boiler. (c) One kg of air at 7 bar pressure and 90° C temperature undergoes a non-flow process. The law of expansion is PV^{1.1} =C. the pressure falls to 1.4 bar during process calculate (1) the final temperature (2) work done (3) Change in internal energy (4) Heat exchange. Take R= 287 J/kg.K and γ=1.4 for air. OR (a) What is priming? Why priming is required in centrifugal pump? (b) List different mountings of boiler and explain any one in brief. (c) With usual notation derive the expression for air standard efficiency of diesel cycle. (a) What is the difference between rigid coupling and flexible coupling? (b) Explain working of Vapor absorption refrigeration system with neat sketch. (c) One kg of an ideal gas is heated from 18° C to 98° C assuming R=0.27 KJ/kgK and γ=1.18 for gas calculate (1) specific heats (Cp and Cv) (2) Change in internal energy (3) change in enthalpy. OR (a) Write the function of following I.C. Engine components: (1) Spark Plug (2) Injector (3) Piston Rings (b) Define the terms: Hardness, Toughness, Ductility, Elasticity (c) It is required to find out the efficiency of an air standard Carnot Cycle with the following data. Minimum temperature of cycle 15° C, minimum pressure in cycle 1 bar. Pressure after isothermal compression 3.5 bar. Pressure after isenterpoir | | (a) | What is throttling calorimeter? Also state its limitation | 03 | |------------|--|--| | (b) | Explain working of split air conditioner. | 04 | | (c) | Calculate the dimensions (diameter and stroke) of a double acting reciprocating compressor neglecting clearance volume from the following additional data: compressor power=10 kw, Compressor ratio=7, Inlet pressure=1 bar, Piston speed = 180 m/min, Law of compression = PV ^{1.3} =C, L/D = 1.5 | 07 | | | OR | | | (a) | Define brake and also state difference between clutch and coupling. | 03 | | (b) | Elaborate differences between reciprocating and rotary compressor? | 04 | | (c) | A six-cylinder four stroke petrol engine develop 300 KW brake power at 2500 rpm. The stroke to bore ratio is 1.25. Assuming the mechanical efficiency as 80% and mean effective pressure of 9 bar, determine the bore and stroke of engine. Also find the fuel consumption in kg/hr if indicated thermal efficiency is 30% and CV of fuel used is 41900 KJ/kg. | 07 | | | (a)
(b) | (b) Explain working of split air conditioner. (c) Calculate the dimensions (diameter and stroke) of a double acting reciprocating compressor neglecting clearance volume from the following additional data: compressor power=10 kw, Compressor ratio=7, Inlet pressure=1 bar, Piston speed = 180 m/min, Law of compression = PV^{1.3}=C, L/D = 1.5 OR (a) Define brake and also state difference between clutch and coupling. (b) Elaborate differences between reciprocating and rotary compressor? (c) A six-cylinder four stroke petrol engine develop 300 KW brake power at 2500 rpm. The stroke to bore ratio is 1.25. Assuming the mechanical efficiency as 80% and mean effective pressure of 9 bar, determine the bore and stroke of engine. Also find the fuel consumption in kg/hr if indicated thermal efficiency | ******