

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-III EXAMINATION – WINTER 2025****Subject Code:3130005****Date:31-12-2025****Subject Name: Complex Variables and Partial Differential Equations****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS
Q.1	(a) Show that $ \frac{z}{ z } - 1 \leq \arg(z) $	03
	(b) Prove that $u = x^2 - y^2$ and $v = \frac{y}{x^2+y^2}$ are harmonic functions of (x, y) but are not harmonic conjugates	04
	(c) Find the bilinear transformation which maps the points $z = 1, i, -1$ into $w = i, 0, -i$ respectively. Find invariant points and image of $ z < 1$ under this mapping.	07
Q.2	(a) Evaluate the integral $\int_C \bar{z} dz$; where C is right half of the circle $z = 2e^{i\theta} (-\frac{\pi}{2} < \theta < \frac{\pi}{2})$	03
	(b) Evaluate $\int_0^{3+i} z^2 dz$ along the parabola $x = 3y^2$	04
	(c) Explain inversion transformation. Find the image of $\frac{1}{4} \leq y \leq \frac{1}{2}$ under mapping $w = 1/z$. Show this translation on graph	07
	OR	
	(c) State Cauchy integral theorem and Cauchy integral formula. Evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where $c : z = 3$	07
Q.3	(a) Determine the poles of the function and the residue at each pole $f(z) = \frac{z^2}{(z-2)^2(z-1)}$	03
	(b) Find the radii of convergence and region of convergence of the following: <ul style="list-style-type: none"> (i) $\sum_{n=1}^{\infty} \frac{z^n}{2^{n+1}}$ (ii) $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$ 	04
	(c) Find the Laurent series of $\frac{1}{z(z^2 - 3z + 2)}$ for region <ul style="list-style-type: none"> (i) $0 < z < 1$ (ii) $1 < z < 2$ (iii) $z > 2$ 	07

OR

Q.3 (a) Define: Singular point, Isolated singular point, Residue. **03**
 Explain types of isolated singular points.

(b) Expand $f(z) = \frac{(z-1)}{(z+1)}$ as Taylor series about the following points a) $z = 0$ b) $z = 1$ **04**

(c) Evaluate following real integration using residue theorem. **07**

$$\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+1)} dx$$

Q.4 (a) Eliminate the arbitrary function from the equation **03**
 $z = xy + f(x^2 + y^2)$

(b) Solve $y^2p - xyq = x(z - 2y)$ **04**

(c) Solve following non-linear partial differential equations **07**
 using Charpit's method $px + qy = pq$

OR

Q.4 (a) Solve: $\frac{\partial^2 z}{\partial x^2} + z = 0$ given that $z = e^y$ and $\frac{\partial z}{\partial x} = 1$ when $x = 0$ **03**

(b) Solve following non-linear partial differential equations. **04**

a) $p(1 + q) = qz$ b) $p^2 - q^2 = x - y$

(c) Solve the following Partial differential Equation by **07**
 Langrange's Method $(x^2 - yz)p + (y^2 - zx)q = (z^2 - xy)$

Q.5 (a) Find the Particular integral of $4r + 12s + 9t = e^{(3x-2y)}$ **03**

(b) Using method of separation of variables solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ given that $u(x, 0) = 6e^{-3x}$. **04**

(c) Show that $u = \sin 9t \sin (1/4)x$ is a solution of a one dimensional wave equation **07**

OR

Q.5 (a) Classify following second order homogeneous partial differential equations as elliptic, parabolic or hyperbolic **03**

a) $\frac{\partial^2 u}{\partial t^2} + 4 \frac{\partial^2 u}{\partial x \partial t} + 4 \frac{\partial^2 u}{\partial x^2} = 0$

b) $2 \frac{\partial^2 u}{\partial t^2} + 4 \frac{\partial^2 u}{\partial x \partial t} + 3 \frac{\partial^2 u}{\partial x^2} = 0$

(b) Solve $\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x + y$ **04**

(c) Derive the solutions of one dimensional wave equation . **07**
