

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III EXAMINATION – WINTER 2025

Subject Code:3131905**Date:15-12-2025****Subject Name: Engineering Thermodynamics****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

3. Attempt all questions.
4. Make suitable assumptions wherever necessary.
5. Figures to the right indicate full marks.
6. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) State Zeroth law of thermodynamics. (b) What is quasi-static process? Explain with neat sketch. (c) Write short note on thermodynamic temperature scale.	03 04 07
Q.2	(a) State and explain first law of thermodynamics. (b) Write and explain steady flow energy equation for (i) Turbine (ii) Heat exchanger. (c) Write short note on limitations of first law of thermodynamics.	03 04 07
	OR	
	(c) 10 kg of fluid per minute goes through a reversible steady flow process. The properties of fluid at the inlet are : $p_1 = 1.5$ bar, $\rho_1 = 26$ kg/m ³ , $C_1 = 110$ m/s and $u_1 = 910$ kJ/kg and at the exit are $p_2 = 5.5$ bar, $\rho_2 = 5.5$ kg/m ³ , $C_2 = 190$ m/s and $u_2 = 710$ kJ/kg. During the passage, the fluid rejects 55 kJ/s and rises through 55 metres. Determine : (i) The change in enthalpy (Δh) ; (ii) Work done during the process (W).	07
Q.3	(a) Explain principle of increase of entropy. (b) State and explain different causes of irreversibility. (c) Write short note on entropy change for non-flow and flow processes.	03 04 07
	OR	
Q.3	(a) State function of feed water heater. (b) Explain in brief about reheat-regenerative cycle. (c) Discuss in detail about different variables affecting efficiency of Rankine cycle.	03 04 07
Q.4	(a) What is air standard efficiency? (b) Explain simple Brayton cycle with neat sketch. (c) Explain simple vapour compression refrigeration (VCR) cycle on P-h and T-s diagrams.	03 04 07
	OR	
Q.4	(a) Explain term mean effective pressure. (b) Enlist different factors affecting the performance of VCR cycle. Explain any one of them in detail. (c) Write short note on Bell-Coleman cycle.	03 04 07
Q.5	(a) What is stoichiometric air fuel ratio? (b) Explain adiabatic flame temperature. (c) Write short note on Bomb gas calorimeter.	03 04 07
	OR	
Q.5	(a) What is calorific value of fuel? (b) Explain in brief about reversed Carnot cycle and its limitations. (c) A mixture of hydrogen (H_2) and oxygen (O_2) is to be made so that the ratio of H_2 to O_2 is 2 : 1 by volume. If the pressure and temperature are 1 bar and 25°C respectively, calculate : (i) The mass of O_2 required ; (ii) The volume of the container	03 04 07
