

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-V EXAMINATION – WINTER 2025****Subject Code:3151908****Date:17-11-2025****Subject Name:Control Engineering****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

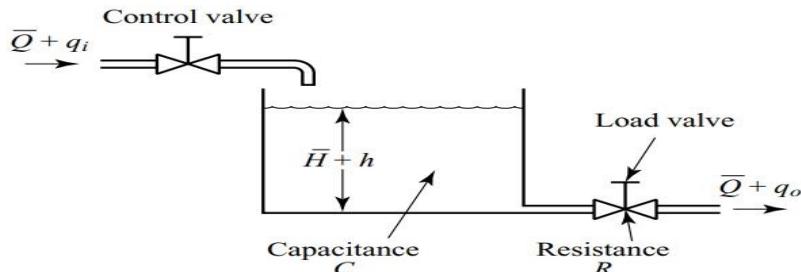
		MARKS
Q.1	(a) Define: (i) Controlled variable (ii) Manipulated variable (iii) Error	03
	(b) Define Control system. Explain the role of Servomechanism in Control systems.	04
	(c) Draw the block diagram for a closed loop control system. List the advantages of closed loop control system over open loop control system.	07
Q.2	(a) Determine Laplace transform of : (i) Step function, $u(t)$ (ii) Impulse function, $\delta(t)$ (iii) $\sin\omega t$	03
	(b) Explain Principle of superposition and homogeneity for a linear system. Linearize $T = mgL\sin\theta$, about $\theta = 0^\circ$.	04
	(c) Using Block diagram reduction method, find transfer function:	07

OR

Q.3	(a) List the steps in finding transfer function using Mason's Gain formula. Define (a) Node (b) Path (c) Branch (d) Loop.	07
	(b) Determine transfer function of : (i) Proportional controller (ii) Integral controller (iii) Derivative controller	03
	(c) The transfer function of a system $Y(s)/R(s)$ is $10(s+2) / s^2 + 8s + 15$. Determine $y(t)$ when $r(t)$ is a unit step function.	04
	(c) Obtain state transition matrix and inverse of state transition matrix of following:	07

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

OR


Q.3	(a) Determine the poles and zeroes of following control system and plot them on S-plane.	03
------------	--	-----------

$$G(s) = \frac{K(s + 2)}{s^2 + 2s + 3}$$

(b) Determine the value of K for which, the control system with following characteristic equation will behave as stable system: **04**

$$S^3 + 3S^2 + 2S + K = 0$$

(c) Carry out mathematical modeling of given liquid level system and determine the transfer function: **07**

Q.4 (a) Define following terms : (a) Absolute stability (b) Relative stability (c) Steady state error **03**

(b) Define: (i) Rise time (ii) Settling time (iii) Peak time (iv) Maximum overshoot **04**

(c) Explain in detail the steps involved in Nyquist stability criteria. **07**

OR

Q.4 (a) Define (a) Bandwidth (b) Break frequency (c) Resonant frequency in reference with frequency response analysis. **03**

(b) Explain (a) Lead compensation (b) Lag compensation in connection with frequency response analysis. **04**

(c) Explain Ziegler- Nichols rules for Tuning of PID controllers. **07**

Q.5 (a) List and explain the components of Hydraulic control system. **03**

(b) Write advantages of Hydraulic control system over Pneumatic control system. **04**

(c) With the help of neat diagram, Explain the working of Nozzle-Flapper device. Also draw the characteristic curve of it. **07**

OR

Q.5 (a) Compare electrical control system and Hydraulic control system. **03**

(b) Differentiate Force-balance and Force-distance type controllers. **04**

(c) Carry out mathematical modeling of a hydraulic integral controller (Hydraulic servomotor) and determine its transfer function. **07**
