

Enrollment No./Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering - SEMESTER - V EXAMINATION - WINTER 2025

Subject Code: 3151909

Date: 19-11-2025

Subject Name: Heat Transfer

Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Instructions

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	Marks
Q.1 (a) How does the heat conduction differ from convection?	03
(b) What is lumped heat capacity analysis? List out the assumptions made in lumped heat capacity analysis.	04
(c) Derive expression for temperature distribution under one dimensional steady state heat conduction for plane wall.	07
Q.2 (a) Define thermal capacity and thermal diffusivity of a material.	03
(b) Explain the criteria of selection of fins.	04
(c) Explain following: 1. Fin efficiency 2. Fin effectiveness	07

OR

(c) Derive the heat conduction equation through composite wall.	07
Q.3 (a) State comparison between natural and forced convection heat transfer.	03
(b) Explain Newton's law of cooling and convection heat transfer coefficient	04
(c) Derive the two dimensional energy equation for thermal boundary layer over a flat plate.	07

OR

(a) Explain that heat transfer coefficient for free convection is lower than forced convection.	03
(b) Explain physical significance of following dimensionless numbers: 1. Grashoff number 2. Reynolds number	04
(c) By dimensional analysis show that for forced convection, $Nu = f(Re, Pr)$	07

Q.4 (a) Define: 03
 1. Black body
 2. White body
 3. Opaque body

(b) State and explain Wien's displacement law. 04

(c) A hot body at 800 K having an area of 0.12 m^2 . Calculate: (i) Total rate of energy emitted, (ii) intensity of normal radiation. 07

OR

(a) Define Absorptivity, Reflectivity and transmissivity of radiation. 03

(b) State and explain Kirchoff's law of radiation. 04

(c) State Stephen Boltzman law. Determine the surface temperature of sun and emissive power at that temperature when the sun emits radiation at $\lambda = 0.52 \mu\text{m}$. Assuming sun as black body. 07

Q.5 (a) Differentiate between subcooled and saturated boiling. 03

(b) Explain condensation process. What are the two modes of condensation. 04

(c) Derive an expression for LMTD in case of parallel flow heat exchanger. 07

OR

(a) Differentiate between nucleate and film boiling. 03

(b) Explain why condenser tubes are horizontal. 04

(c) In counter flow heat exchanger, 2.78 kg/sec of an oil having specific heat of 2.095 kJ/kg K is cooled from 80°C to 50°C by 2.22 kg/sec of water entering at 25°C . Determine the area of heat exchanger. Take $U = 300 \text{ W/m}^2\text{K}$ and $C_p = 4.18 \text{ kJ/kg K}$. 07
