

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-VI EXAMINATION – WINTER 2025****Subject Code:3161910****Date:02-12-2025****Subject Name:Applied Thermodynamics****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	MARKS
Q.1* (a) Define brake power, indicated power and brake specific fuel consumption. 03	
(b) Derive equation of constants employed in Vander Waal's equation. 04	
(c) Prove that velocity of sound wave is the square root of the ratio of the change in pressure to the change in density of a fluid due to disturbance in compressible flow. 07	
Q.2 (a) Enlist various desirable properties of good refrigerant. 03	
(b) Give classification of compressors. 04	
(c) Explain construction and working of Li-Br Vapour Absorption System with neat sketch. 07	
OR	
(c) In a cooling application, air at 32°C DBT and 20°C WBT is passed through a cooling coil maintained at 5°C. The heat removed by the cooling coil from air is 14 kW and air flow rate is 42.5 m ³ /min. Determine (i) DBT and WBT of the air leaving the coil, (ii) coil by-pass factor. 07	
Q.3 (a) Give difference between Euro norms Bharat stage emission norms. 03	
(b) Explain chemical dehumidification process. 04	
(c) What is loss due to dissociation? Explain effect of dissociation on temperature and power in engine. 07	
OR	
Q.3 (a) The COP of a refrigerator is 6, when it maintains the temperature of -3°C in the evaporator. Determine the condenser temperature and refrigerating effect if the power required to run the refrigerator is 7.5 kW. 03	
(b) Explain actual cycle for SI engine with p-v diagram. 04	
(c) Write short note on heat balance sheet. 07	
Q.4 (a) What is the need of multi-staging in reciprocating compressor? 03	
(b) Explain Exhaust Gas Recirculation System with neat Sketch. 04	

(c) The following details were noted in a test on a 4-cylinder, 4-stroke engine: cylinder diameter = 100 mm ; stroke length = 120 mm ; speed of the engine = 1600 rpm ; fuel consumption = 0.2 kg/min ; CV of the fuel = 44000 kJ/kg ;

difference in tension tension on either side of the brake pulley = 40 kg ; brake circumference is 300 cm. If the mechanical efficiency is 80 % calculate, brake and indicated thermal efficiency , indicated mep, brake specific fuel consumption.

OR

Q.4 (a) Define compressible and incompressible flow. **03**

(b) Explain the phenomenon of surging and stalling in an axial flow compressor. **04**

(c) Explain various losses in centrifugal compressor. **07**

Q.5 (a) Explain effect of pre- whirl in centrifugal compressor. **03**

(b) Explain Propagation of Pressure Waves Distribution in a Compressible Fluid with neat Sketch. **04**

(c) Explain with neat Sketch Effect of Impeller Blade Shape on Performance in Centrifugal Compressor. **07**

OR

Q.5 (a) Explain Mach angle and Mach cone. **03**

(b) Explain designation system of refrigerants. **04**

(c) Explain the use of aerofoil blading in axial flow compressor. **07**
