

Enrolment No./Seat No_____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII EXAMINATION – WINTER 2025

Subject Code:3171920

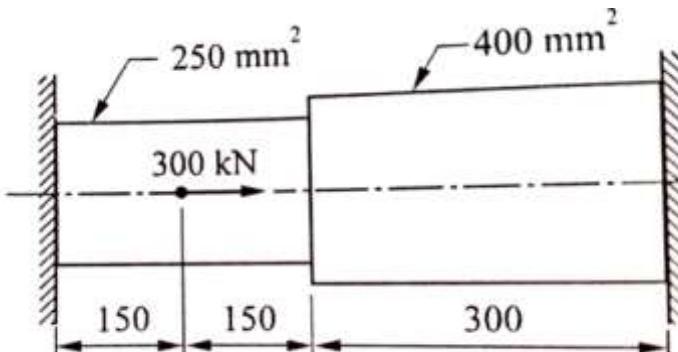
Date:18-11-2025

Subject Name:Finite Element Methods

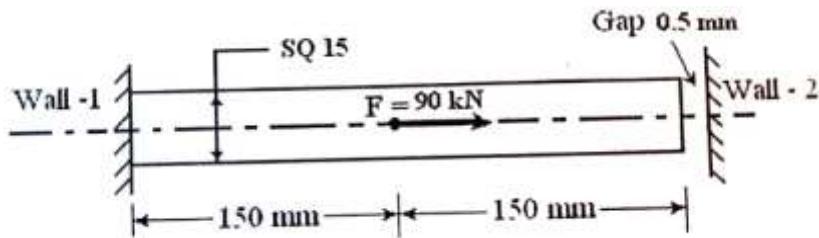
Time:10:30 AM TO 01:00 PM

Total Marks:70

Instructions:

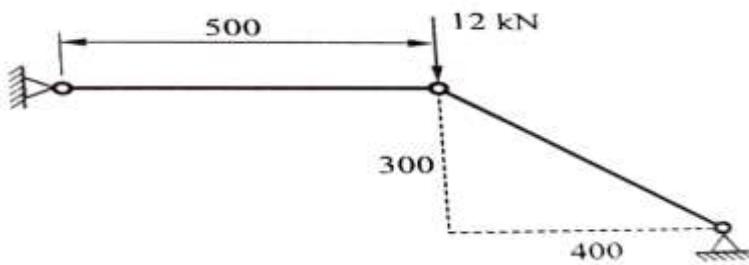

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

MARKS

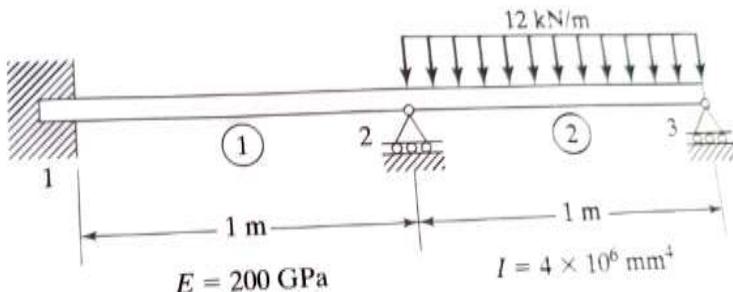

Q.1	(a) Why FEA is more popular method to solve complex problems in comparison with analytical method.	03
	(b) Explain Domain, Node and Element with neat sketch.	04
	(c) Explain step by step procedure to solve structural problem using FEM.	07
Q.2	(a) Discuss the different types of elements used in FEA.	03
	(b) Explain the Rayleigh-Ritz method.	04
	(c) Derive the stiffness matrix for a bar element.	07

OR

(c) For the loaded bar shown in figure, determine the nodal displacement, and elements stresses. Assume $E=200 * 10^9 \text{ N/m}^2$.	07
---	-----------



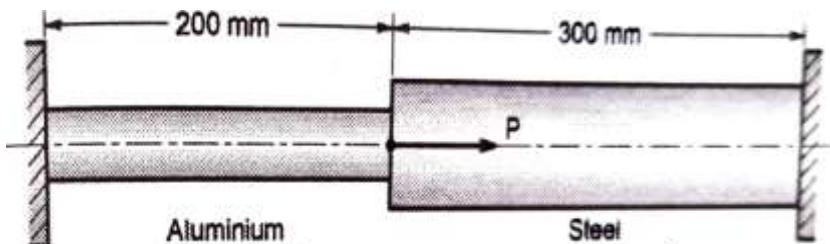
Q.3	(a) Give examples of plane stress and plane strain problems.	03
	(b) Enlist the properties of stiffness matrices.	04
	(c) For the loading as in figure, determine displacements and stresses. Assume $E=80 * 10^3 \text{ MPa}$.	07



OR

Q.3 (a) Explain symmetric banded matrices. **03**
 (b) How are thermal effects considered in a truss element? Give the necessary equation to determine stress considering thermal effects. **04**
 (c) For the two bar truss as shown in figure, determine the displacements in the bars. **07**
 Assume $E=70$ GPa and $A=200$ mm 2 for both members.

Q.4 (a) Explain how symmetry is used in FEA with applications. **03**
 (b) Explain isoparametric element. **04**
 (c) For the beam and loading shown in figure , determine the slopes at 2 and 3 (indicated in figure.) Take $E = 200$ GPa and $I= 4 * 10^6$ mm 4 **07**


OR

Q.4 (a) Explain LST element and give its application. **03**
 (b) Explain skyline method of storing data. **04**
 (c) Explain the Plane Frames element indicating its applications. Provide element stiffness matrix K and load vector. **07**
Q.5 (a) Explain axisymmetric element with example. **03**
 (b) Explain the shape function of CST element. **04**
 (c) The triangular element has nodal coordinates (10,10),(40,20) and (30,50) for nodes 1,2, and 3 respectively for a point P inside triangle, determine the x and y coordinates if shape functions N_1 and N_2 are 0.15 and 0.25 respectively. **07**

OR

Q.5 (a) How will you make Finite element models of pressure vessel and Belleville spring. **03**
(b) Explain the FEA procedure to model a tapered bar subjected to an axial load. **04**
(c) A stepped bimetallic bar, made of aluminium ($E = 70 * 10^9 \text{ N/m}^2$) **07**

and steel ($E = 200 * 10^9 \text{ N/m}^2$) is subjected to an axial load of 300 KN at 20°C as in figure. The temperature of bar is then raised to 60°C. The coefficient of thermal expansion for aluminum is $23 * 10^{-6}$ per °C while for steel is $11.7 * 10^{-6}$ per °C, the cross-sectional area for aluminum and steel are 900 mm^2 and 1200 mm^2 respectively. Find the nodal displacement and element stresses.
