

Enrollment No./Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering - SEMESTER - VII EXAMINATION - WINTER 2025

Subject Code: 3170620

Date: 01-12-2025

Subject Name: Computational Geotechnics

Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Instructions

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	Marks
Q.1 (a) Define Successive Over Relaxation (SOR) method and explain the role of relaxation factor.	03
(b) Compare Bisection method and Successive Approximation method.	04
(c) Using Gauss–Seidel method, perform three iterations to solve the following system of equations: $8x - y + 2z = 20$ $2x + 6y - z = -12$ $x - y + 7z = 15$ Start with initial guess (0,0,0)	07
Q.2 (a) Explain the difference between initial value problems (IVP) and boundary value problems (BVP) with appropriate applications in geotechnical engineering.	03
(b) Explain Bisection method with suitable example.	04
(c) Write down steps of forth order Runge Kutta method with suitable example.	07
OR	
(c) Explain Second order Runge Kutta method with suitable example.	07
Q.3 (a) Define “contact forces” in Discrete Element Modelling (DEM). Mention their significance in simulating granular materials.	03
(b) Explain Modified Mohr Coulomb failure theory for shear strength of soil with detailed strength envelop.	04
(c) Write a detailed note on Frictional 1-D plasticity models and explain how they help in understanding the stress–strain behaviour of soils.	07
OR	
(a) Explain the need for constitutive modelling in soil mechanics.	03
(b) Enlist the assumption made in the theory of 1-D consolidation.	04
(c) Write detail note on Tri-axial test with neat sketch.	07
Q.4 (a) Discuss the engineering relevance of yield surfaces in geotechnical constitutive models.	03

- (b) Explain compression index (C_c) and Swelling index (C_s). 04
- (c) Explain the Huber–von Mises failure criterion and state its limitations for geomaterials. 07

OR

- (a) List the major assumptions used in Cam Clay constitutive modelling. 03
- (b) Explain how the Lade–Duncan criterion accounts for stress invariants in predicting earth pressure. 04
- (c) Explain the role of initial boundary value problems (IBVP) in modelling consolidation and slope stability. 07

Q.5

- (a) Define seepage velocity and hydraulic gradient. Explain their role in modelling flow through porous media. 03
- (b) Discuss the physical meaning and laboratory determination of coefficient of consolidation (C_v). 04
- (c) Explain consolidation mechanism using concept of spring analogy theory. 07

OR

- (a) What are ordinary differential equations (ODE) and partial differential equations (PDE)? Give one geotechnical example for each. 03
- (b) Explain the numerical modelling steps for 1-D consolidation using FDM,. 04
- (c) Write a comprehensive note on flow through porous media, covering governing equations, assumptions, and numerical modelling approaches. 07
