

Enrollment No./Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering - SEMESTER - III EXAMINATION - WINTER 2025

Subject Code: BE03009011

Date: 15-12-2025

Subject Name: Analog and Digital Electronics

Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Instructions

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	Marks
Q.1 (a) Draw the symbol and write truth table of NAND, NOR, EX-NOR gate	03
(b) Define slew rate, CMRR, output offset voltage and input bias current	04
(c) Draw and explain block diagram of an OPAMP.	07
Q.2 (a) Define the term inverting, non-inverting and differential amplifier.	03
(b) Discuss the application of OPAMP as a zero-crossing detector.	04
(c) The OPAMP is a 741C with the following specifications: $A = 200000$, $R_i = 2M\Omega$, $R_o = 75\Omega$, $f_o = 5\text{Hz}$, Supply voltage = +15V, and output voltage swing = $\pm 13\text{V}$. It is connected as a close loop noninverting amplifier with $R_1 = 1k\Omega$ and $R_F = 10\text{ k}\Omega$. Calculate the values of A_F , R_{iF} , R_{oF} and f_F .	07

OR

(c) Derive the voltage gain equation of single OPAMP close loop differential amplifier.	07
Q.3 (a) Draw the circuit diagram of triangular wave generator using OPAMP.	03
(b) Draw the transfer characteristic of OPAMP comparator and explain in brief.	04
(c) Draw and explain working of adjustable voltage regulator using IC LM 317.	07

OR

(a) Draw the circuit diagram of peak detector using OPAMP	03
(b) Draw the circuit of non-inverting negative half wave precision rectifier using OPAMP and explain in brief.	04
(c) Explain with diagram the working of Wien bridge oscillator using an OPAMP.	07
Q.4 (a) Compare the performance of SR flipflop using NAND gates and NOR gates.	03
(b) Classify the register based on data shifting and circuit technology with brief description.	04
(c) Explain the working of decade counter with logic diagram and timing diagram.	07

OR

(a) Write excitation table of T flipflop and also write it's characteristic equation from 2 variable k-map. **03**

(b) Analyze the synchronous operation of a 4-bit shift left register by logic diagram and timing diagram. **04**

(c) Explain the working of 4-bit synchronous counter with look ahead carry. Also draw logic diagram and timing diagram. **07**

Q.5 (a) State applications of Digital to Analog converter. **03**

(b) Explain 2-bit digital comparator with logic diagram and truth table. **04**

(c) Explain the voltage to time conversion type ADC with circuit diagram and waveforms. **07**

OR

(a) Write analog output voltage equation of weighted resistor D/A converter and explain in brief. **03**

(b) Draw and explain the 4-variable k-map with assuming suitable data. **04**

(c) Explain in detail the process of sampling, quantization and encoding used for A/D converter. **07**
