GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-I & II EXAMINATION – WINTER 2024

Subj	ect	Code:BE01000041 Date:04-01-20	Date:04-01-2025				
Subj	ect :	Name:Mathematics-I					
		:30 AM TO 01:30 PM Total Marks:	70				
Instru							
		Attempt all questions. Make suitable assumptions wherever necessary.					
	3.	Figures to the right indicate full marks.					
	4.	Simple and non-programmable scientific calculators are allowed.					
Q.1	(a)	Find $\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x}\right)$	03				
	(b)	Write second derivative test for local extrema and find the extrema of $f(x) = x^4 - 4x^3 + 10$	04				
	(c)	Expand e^x into the power series of x . Find number of terms required to calculate e with an error less than 10^{-4} .	07				
Q.2	(a)	Define Beta and Gamma functions and evaluate $\int_0^\infty \frac{x^3(1+x^2)}{(1+x)^{10}} dx$	03				
	(b)	a. d	04				
	(c)		07				
		its volume and sketch the region.					
		OR					
	(c)	Find the surface area of a solid generated by the revolution of the circle $r = 2a\cos\theta$ about the initial line.	07				
Q.3	(a)	Determine whether $\lim_{(x,y)\to(0,0)} \frac{x^6-y^2}{x^3y}$ exists, find it if exists.	03				
	(b)	Applying the chain rule find $\frac{dw}{dt}$ if $w = x^2y - y^2$, where $x = sint$ and	04				
	()	$y = e^t$ also find $\frac{dw}{dt}$ at $t = 0$	0=				
	(c)	Find the extreme value of the function $f(x, y) = x^3 + y^3 + 3x^2 - 3y^2$ OR	07				
Q.3	(a)	If $u = \tan^{-1}({}^{y}/_{x})$ prove that $\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = 0$	03				
	(b)	Find the tangent plane and normal line of the surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ at point (1, 2, 4)	04				
	(c)		07				
Q.4	(a)	State sandwich theorem for the sequence and discuss the convergence of the sequence $\left\{\frac{\cos n}{n}\right\}$	03				
	(b)	Test the convergence of the series $\sum_{n=0}^{\infty} \left(\frac{4^{n}+3}{5^{n}}\right)$, also find the sum of the	04				
		series if it is convergent.					
	(c)	11 7 6 11 1	07				
		convergence of the series $\sum_{n=0}^{\infty} \frac{(x-5)^n}{n^2}$					
OR							

Q.4	(a)	Investigate the convergence of the series $\sum_{n=0}^{\infty}$	$\frac{4^n n! n!}{(2n!)}$		03
	(T)			1	Λ.4

- (b) Discuss the convergence of the series and find it's sum $\sum_{n=0}^{\infty} \frac{1}{n(n+1)}$
- (c) Applying appropriate test find the interval of convergence and radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{3^n (n+1)}$
- Q.5 (a) Evaluate $\iint_R y^2 x \, dA$ over the rectangular region $R = \{(x, y): -3 \le x \le 2, \ 0 \le y \le 1\}$
 - (b) Use double integration to determine the area of the region R inclosed between 04 the parabola $y = \frac{1}{2}x^2$, and the line y = 2x, also sketch the region.
 - (c) Applying change of the order of the integration to evaluate $\int_0^2 \int_{\frac{y}{2}}^1 e^{x^2} dx dy$, 07 also sketch the region.

OR

- Q.5 (a) Evaluate $\int_0^1 \int_x^1 \int_0^{y-x} dz dy dx$
 - (b) Evaluate the following integral by changing in to the polar co ordinate. 04 $\iint_R e^{x^2 + y^2} dA \quad \text{where } R \text{ is the semi circular region bounded by the x-axis and the curve } y = \sqrt{1 x^2}$
 - (c) A thin plate covers the triangular region bounded by the x-axis and the line x = 1 and y = 2x in the first quadrant. The plate density at the point (x, y) is $\delta(x, y) = 6x + 6y + 6$ find the plate's mass, first moments and the centre of mass about the coordinate axis.
