Subject Name:Mathematics - 1 Time:10:30 AM TO 01:30 PM

Subject Code:3110014

Instructions:

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-I & II EXAMINATION – WINTER 2024

Date:03-01-2025

Total Marks:70

	1. 2. 3. 4.	Figures to the right indicate full marks.	
Q.1	(a)	Find the equation of tangent plane and normal line to the surface $xyz = 6$ at $(1,2,3)$.	03
	(b)	Evaluate $\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$.	04
	(c)	Solve the following system by Gauss Elimination method: x+y+2z=9	07
		2x+4y-3z=1 $3x+6y-5z=0$	
Q.2	(a)	Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at the point $(2, -1, 1)$ in	03
	(b)	the direction $\hat{i} + 2\hat{j} + 2\hat{k}$. Expand $x^4 - 3x^3 + 2x^2 - x + 1$ in powers of $(x - 3)$.	04
	(c)	Find the Fourier series of $f(x) = x^2 0 < x < \pi$ $= 0 \pi < x < 2\pi$	07
		OR	
	(c)	Find the Fourier series of $f(x) = x + x $ in the interval $-\pi < x < \pi$.	07
Q.3	(a)	Show that the sequence $\{u_n\}$, where $u_n = \frac{\sin n}{n}$ converges to zero.	03
	(b)	Evaluate $\int_{0}^{3} \frac{dx}{(x-1)^{\frac{2}{3}}}.$	04
	(c)	A rectangular box without a lid is to be made from 12 m ² of cardboard. Find the maximum volume of such box.	07
		OR	0.0
Q.3	(a)	Evaluate $\int_{0}^{1} (\log x)^5 dx$.	03
	(b)	Find the cosine series for $f(x) = \pi - x$ in the interval $0 < x < \pi$.	04
	(c)	Find the extreme values of the function $x^3 + xy^2 + 21x - 12x^2 - 2y^2$.	07
Q.4	(a)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$.	03

(b)	$\frac{\pi}{2}$ 1-sin θ	04
	Evaluate the integral $\int_{0}^{2\pi} \int_{0}^{3\pi} r^{2} \cos \theta dr d\theta$.	

(c) Find the length of the parabola
$$x^2 = 4y$$
 which lies inside the circle $x^2 + y^2 = 6y$

OR

Q.4 (a) Evaluate
$$\int_{0}^{2} \int_{1}^{z} \int_{0}^{yz} xyz \, dx \, dy \, dz$$
.

(b) Test the convergence of the series
$$\sum \frac{(n+1)^n x^n}{n^{n+1}}$$
.

(c) Change the order of integration and evaluate
$$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx.$$

Q.5 (a) Test the convergence of the series
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$
.

(b) Find a and b such that
$$A = \begin{bmatrix} a & 4 \\ 1 & b \end{bmatrix}$$
 has 3 and -2 as eigenvalues.

(c) If
$$u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$
, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.

OR

Q.5 (a) Evaluate
$$\int_{0}^{\infty} \frac{dv}{(1+v^{2})(1+\tan^{-1}v)}$$
.

Using Gauss Jordan method find inverse of $\begin{bmatrix} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$.

(c) Show that the matrix
$$\begin{bmatrix} 1 & -2 & 0 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
 is not diagonalizable.
