

Enrollment No./Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering - SEMESTER - III EXAMINATION - WINTER 2025

Subject Code: BE03005041

Date: 22-12-2025

Subject Name: Numerical Methods in Chemical Engineering

Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Instructions

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	Marks
Q.1 (a) Explain following terms: 1) Significant figures, 2) Truncation Error.	03
(b) Explain sources of arising errors in numerical computation.	04
(c) Round off the numbers 865250 and 37.46235 to four significant figures and compute E_a , E_r , E_p in each case.	07
Q.2 (a) Describe intermediate value properties theorem.	03
(b) Find a root of the equation $x^3 - x - 1 = 0$, using the bisection method correct to three decimal places.	04
(c) Find by Newton's method, the real root of the equation $3x = \cos x + 1$, correct to four decimal places.	07

OR

(c) Find the root of the equation $xe^x = \cos x$ using the secant method correct to four decimal places. **07**

Q.3 (a) Explain the Gauss Jordan method to solve the system of linear equations. **03**

(b) Apply Gauss elimination method to solve the equations:
 $x + 4y - z = -5$; $x + y - 6z = -12$; $3x - y - z = 4$ **04**

(c) Apply the Gauss-Seidal iteration method to solve the equations.
 $20x + y - 2z = 17$; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$ **07**

OR

(a) Explain Eigen values and Eigen vectors. **03**

(b) Find the eigenvalues and eigenvectors of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ 04

(c) Solve by Jacobi's iteration method, the equations correct to two decimal places. 07
 $10x + y - z = 11.19; x + 10y + z = 28.08; -x + y + 10z = 35.61$

Q.4 (a) Write down normal equations to fit the straight line $y = a + bx$. 03

(b) Fit a straight line to the following data: 04

x	6	7	7	8	8	8	9	9	10
y	5	5	4	5	4	3	4	3	3

(c) Find the missing term in the table: 07

x	2	3	4	5	6
y	45.0	49.2	54.1	67.4

OR

(a) Establish the following identities: 03

(1) $\Delta = E - 1$
(2) $\Delta = 1 - E^{-1}$

(b) From the following table, estimate the number of students who obtained marks between 40 and 45: 04

Marks:	30-40	40-50	50-60	60-70	70-80
No. of Students:	31	42	51	35	31

(c) Find the distance moved by a particle and its acceleration at the end of 4 seconds, if the time versus velocity data is as follows: 07

t	0	1	3	4
v	21	15	12	10

Q.5 (a) Write the formula of Simpson's one-third rule. 03

(b) Use the Trapezoidal rule to estimate the integral $\int_0^2 e^{x^2} dx$ taking 10 intervals 04

(c) Using Euler's method, find an approximate value of y corresponding to x = 1, given that $dy/dx = x + y$ and y = 1 when x = 0. 07

OR

(a) Describe Milne's predictor-corrector method. 03

(b) Solve $y' = x + y$, $y(0) = 1$ by Taylor's series method. Hence find the values of y at $x = 0.1$ and $x = 0.2$. 04

(c) Apply the Runge-Kutta fourth order method to find an approximate value of y when $x = 0.2$ given that $dy/dx = x + y$ and y = 1 when x = 0. 07
