

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-III EXAMINATION – WINTER 2025****Subject Code:3130507****Date:15-12-2025****Subject Name: Chemical Engineering Thermodynamics I****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

Q.1 (a) The potential energy of a body of mass 10 kg is 1.5 kJ. What is the height of the body **03** from the ground?

(b) Define intensive properties and extensive properties. State whether these properties are **04** intensive or extensive: pressure, temperature, volume, specific volume, and density.

(c) With a neat sketch, explain the PVT behavior of pure substance using PT and PV **07** diagrams.

Q.2 (a) Explain procedure to calculate compressibility factor (z) using Pitzer correlations for **03** the compressibility factor.

(b) Explain three-parameter theorem of corresponding states. **04**

(c) Water at 368 K is pumped from a storage tank at the rate of 25 m³/h. The motor for the pump supplies work at the rate of 2 hp. The water passes through a heat exchanger, where it gives up heat at the rate of 42000 kJ/min and is delivered to a second storage tank at an elevation of 20 m above the first tank. Calculate the temperature of the water delivered to the second storage tank? Assume that the enthalpy of water is zero at 273 K and the specific heat of water is constant at 4.2 kJ/kg K. **07**

OR

(c) Derive energy balance equation for steady state flow process. **07**

Q.3 (a) An ideal gas is heated in a closed system at a constant volume from 300 K and 1 bar to a pressure of 2 bar in a reversible process. Determine the heat and work effects. Assume $C_P = 29.3 \text{ kJ/kmol K}$. **03**

(b) Given that latent heat of vaporization of water at 100°C is 2257 J g⁻¹, estimate latent heat at 300°C using Watson equation. Critical temperature for water, $T_C = 647.1 \text{ K}$ **04**

(c) For van der Waals equation of state prove that $a = \frac{27}{64} \frac{R^2 T_C^2}{P_C}$, $b = \frac{1}{8} \frac{RT_C}{P_C}$ **07**

OR

Q.3 (a) Determine the change in entropy when 2 kg of a gas at 277 K is heated at constant volume to a temperature of 368 K. Take the specific heat at constant volume = 1.42 kJ/kg K. **03**

(b) With neat sketch explain: (1) Pressure-Enthalpy diagram, and (2) Mollier diagram. **04**

(c) Explain Mnemonic diagram for thermodynamic property relation. Write down fundamental property relations and Maxwell equations for homogeneous fluid of constant composition using Mnemonic diagram. **07**

Q.4 (a) Explain Hess's law of constant heat summation. **03**

(b) From a reservoir at 600 K, 1000 J of heat is transferred to an engine that operates on the Carnot cycle. The engine rejects heat to a reservoir at 300 K. Determine the thermal efficiency of the cycle and the work done by the engine. **04**

(c) Define standard heat of reaction and standard heat of combustion. Calculate the standard heat of combustion of n-pentane gas at 298.15 K (25°C) if the combustion products are H₂O(l) and CO₂(g)? For n-C₅H₁₂, H₂O_(l) and CO_{2(g)} values of ΔH_{f298}^0 are -146760, -285830 and -393509 J/mol respectively. **07**

OR

Q.4 (a) State general statements for the second law of thermodynamics. **03**

(b) Calculate the heat of formation of chloroform (CHCl₃) with the following given data: **04**

(a) CHCl₃(g) + $\frac{1}{2}$ O₂(g) + H₂O(l) \rightarrow CO₂(g) + 3HCl(g); ΔH_{298}^0 = -509.93 kJ

(b) H₂(g) + $\frac{1}{2}$ O₂(g) \rightarrow H₂O(l); ΔH_{298}^0 = -296.03 kJ

(c) C(s) + O₂(g) \rightarrow CO₂(g); ΔH_{298}^0 = -393.78 kJ

(d) $\frac{1}{2}$ H₂(g) + $\frac{1}{2}$ Cl₂(g) \rightarrow HCl; ΔH_{298}^0 = -167.57 kJ

(c) Explain PV and TS diagram showing Carnot cycle for ideal gas. **07**

Q.5 (a) Write a short note on residual properties. **03**

(b) With H-S diagram explain adiabatic compression process. **04**

(c) Water flowing upward through a vertical pipe enters a reducer with a velocity of 1 m s⁻¹. The diameters at the entrance and exit of the reducer are 0.2 m and 0.1 m respectively. If the pressure at the entrance to the section is 105 kPa, what is the pressure at the exit given that the entrance and exit are 5 m apart? **07**

OR

Q.5 (a) Determine the increase in entropy of solid magnesium when the temperature is increased from 300 K to 800 K at atmospheric pressure. The heat capacity is given by the following relation:

$$C_P = 26.04 + 5.586 \times 10^{-3} T + 28.476 \times 10^4 T^{-2}$$

where C_P is in J mol⁻¹ K⁻¹ and temperature in K. **03**

(b) Derive an equation for the Coefficient of performance (ω) of Carnot refrigeration cycle. **04**

(c) With neat diagram explain Claude liquefaction process. **07**
