

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-III EXAMINATION – WINTER 2025****Subject Code:3130508****Date:22-12-2025****Subject Name: Material & Energy Balance Computation****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

Marks

Q.1 (a) Define fundamental quantity and derived quantity. **03**
 (b) The flow rate of water through a pipe is reported as 20 ft³/min. Convert the volumetric flow rate into the mass flow rate in kg/sec. Density of water is 1 gm/cc. **04**
 (c) A solution of ethyl alcohol containing 8.6% alcohol is fed at the rate of 1000 kg/h to a continuous distillation column. The product (distillate) is a solution containing 95.5% alcohol. The waste solution from the column carries 0.1% of alcohol. All percentages are by mass. Calculate (a) the mass flow rates of top and bottom products in kg/h
 (b) the percentage loss of alcohol. **07**

Q.2 (a) Define Raoult's law. What are the applications and limitations of Raoult's law? **03**
 (b) A liquid has a specific gravity of 0.90 at 25°C. What is its
 (i) Density at 25°C in kg/m³?
 (ii) Specific volume at 25°C in ft³/lb_m?
 (iii) If the liquid is placed in a 1.5 L bottle that has a mass of 232 g, how much will the full bottle weigh? **04**
 (c) A solution of NaCl in water contains 15 % NaCl (by mass) at 335 K. The density of the solution is 1.127 kg/lit. Determine the molarity, normality and molality of the solution. **07**

OR

(c) Pure water and alcohol are mixed to get a 60% (weight) alcohol solution. The densities (kg/m³) of water, alcohol and the solution may be taken to be 998, 798 and 895 respectively at 293 K. Calculate the following:
 (i) The volume percent of ethanol in the solution at 293 K
 (ii) The molarity
 (iii) The molality **07**

Q.3 (a) In a textile mill, a double-effect evaporator system concentrates weak liquor containing 4% (by mass) caustic soda to produce a lye containing 25 % solids (by mass), Calculate the evaporation of water per 100 kg feed in the evaporator **03**
 (b) Discuss methods of solving material balance problems with chemical reaction. **04**
 (c) Oxidation of ethylene to produce ethylene oxide is given by reaction:

$$\text{C}_2\text{H}_4 + 0.5\text{O}_2 \rightarrow \text{C}_2\text{H}_4\text{O}$$

 If air is used 20% in excess of that theoretically required, calculate the quantity of air supplied based on 100 kmol of ethylene fed to the reactor. **07**

OR

Q.3 (a) Determine the weight of water removed while drying 1,000 kg of wet substance from 35% to 5%. **03**
 (b) Define terms: Excess Reactant, Conversion, Yield, and Selectivity. **04**
 (c) A combustion reactor is fed with 50 kmol/h of butane and 2000 kmol/h of air. Calculate the % excess air used and composition of the gases leaving combustion reactor assuming complete combustion of butane **07**

Q.4 (a) Define the following terms: 03
 (i) Heat of formation (ii) Heat of combustion (iii) Heat of reaction

(b) Describe the reasons for performing purging, bypassing and recycling operations in unit operations. 04

(c) Calculate the standard heat of formation of n-propanol liquid using the following data: 07
 Standard heat of formation of CO_2 (g) = -393.51 KJ/mol
 Standard heat of formation of H_2O (l) = -285.83 KJ/mol
 Standard heat of combustion of n-propanol liquid = -2028.19 KJ/mol

OR

Q.4 (a) Define the following terms: 03
 (i) Latent heat (ii) Sensible heat (iii) Heat capacity

(b) With a neat sketch show the material balance for the following unit operations: 04
 (i) Crystallization (ii) Liquid Liquid extraction

(c) A natural gas has the following composition on mole basis: CH_4 =84%, C_2H_6 =13%, and N_2 = 3%. Calculate the heat to be added to heat 2 kmol of natural gas from 311 K to 533 K using heat capacity data given below: 07

C_{pm}° (kJ/kmol·K)

Gas	C_{pm}° (311-298 K)	C_{pm}° (533-298K)
CH_4	36.0483	41.7800
C_2H_6	53.5240	67.4954
N_2	29.1317	29.3578

Q.5 (a) Give detailed classification of fuels 03
 (b) Define and explain the following terms: (i) Heat of formation (ii) Heat of combustion 04
 (iii) Heat of reaction (iv) Heat of solution

(c) Define GCV and NCV for fuels. Give its importance. Also give the names of the equipment used for measuring CV of solid, liquid and gases 07

OR

Q.5 (a) Describe proximate analysis of coal 03
 (b) Explain: (i) Watson equation (ii) Riedel Equation. 04
 (c) Discuss Ultimate analysis of coal. Give Dulong formula and Calderwood equation with nomenclature. 07

GUJARAT TECHNOLOGICAL UNIVERSITY
BE -SEMESTER 3(NEW SYLLABUS)EXAMINATION- SUMMER 2024

Subject Code:3130508**Date:****Subject Name: Material and energy balance computation****Total Marks: 70****Time:****Instructions:**

5. Attempt all questions.
6. Make suitable assumptions wherever necessary.
7. Figures to the right indicate full marks.

			Mar ks	CO (Course Outcome)	Cognitive Level (As per Revised Bloom's Taxonomy)
Q.1	(a)	Define fundamental quantity and derived quantity.	03	CO1	R
	(b)	The flow rate of water through a pipe is reported as 20 ft ³ /min. Convert the volumetric flow rate into the mass flow rate in kg/sec. Density of water is 1 gm/cc	04	CO1	A
	(c)	A solution of ethyl alcohol containing 8.6% alcohol is fed at the rate of 1000 kg/h to a continuous distillation column. The product (distillate) is a solution containing 95.5% alcohol. The waste solution from the column carries 0.1% of alcohol. All percentages are by mass. Calculate (a) the mass flow rates of top and bottom products in kg/h (b) the percentage loss of alcohol.	07	CO3	A
Q.2	(a)	Define Raoult's law. What are the applications and limitations of Raoult's law?	03	CO2	R
	(b)	A liquid has a specific gravity of 0.90 at 25°C. What is its (i) Density at 25°C in kg/m ³ ? (ii) Specific volume at 25°C in ft ³ /lb _m ? (iii) If the liquid is placed in a 1.5 L bottle that has a mass of 232 g, how much will the full bottle weigh?	04	CO2	U
	(c)	A solution of NaCl in water contains 15 % NaCl (by mass) at 335 K. The density of the solution is 1.127 kg/lit. Determine the molarity, normality and molality of the solution.	07	CO2	U
		OR			
	(c)	Pure water and alcohol are mixed to get a 60% (weight) alcohol solution. The densities (kg/m ³) of water, alcohol and the solution may be taken to be 998, 798 and 895 respectively at 293 K. Calculate the following: (i) The volume percent of ethanol in the solution at 293 K (ii) The molarity (iii) The molality	07	CO2	U
Q.3	(a)	In a textile mill, a double-effect evaporator system concentrates weak liquor containing 4% (by mass) caustic	03	CO3	U

		soda to produce a lye containing 25 % solids (by mass), Calculate the evaporation of water per 100 kg feed in the evaporator															
	(b)	Discuss methods of solving material balance problems with chemical reaction.	04	CO4	U												
	(c)	Oxidation of ethylene to produce ethylene oxide is given by reaction: $C_2H_4 + 0.5O_2 \rightarrow C_2H_4O$ If air is used 20% in excess of that theoretically required, calculate the quantity of air supplied based on 100 kmol of ethylene fed to the reactor.	07	CO4	A												
OR																	
Q.3	(a)	Determine the weight of water removed while drying 1,000 kg of wet substance from 35% to 5%.	03	CO3	U												
	(b)	Define terms: Excess Reactant, Conversion, Yield, and Selectivity.	04	CO4	R												
	(c)	A combustion reactor is fed with 50 kmol/h of butane and 2000 kmol/h of air. Calculate the % excess air used and composition of the gases leaving combustion reactor assuming complete combustion of butane	07	CO4	A												
Q.4	(a)	Define the following terms: (i) Heat of formation (ii) Heat of combustion (iii) Heat of reaction	03	CO5	R												
	(b)	Describe the reasons for performing purging, bypassing and recycling operations in unit operations.	04	CO3													
	(c)	Calculate the standard heat of formation of n-propanol liquid using the following data: Standard heat of formation of $CO_2(g)$ = -393.51 KJ/mol Standard heat of formation of $H_2O(l)$ = -285.83 KJ/mol Standard heat of combustion of n-propanol liquid = -2028.19KJ/mol	07	CO5	N												
OR																	
Q.4	(a)	Define the following terms: (i) Latent heat (ii) Sensible heat (iii) Heat capacity	03	CO5	R												
	(b)	With a neat sketch show the material balance for the following unit operations: (i) Crystallization (ii) Liquid Liquid extraction	04	CO3	U												
	(c)	A natural gas has the following composition on mole basis: $CH_4=84\%$, $C_2H_6=13\%$, and $N_2 = 3\%$. Calculate the heat to be added to heat 2 kmol of natural gas from 311 K to 533 K using heat capacity data given below: C_{pm}° (kJ/kmol·K)	07	CO5	N												
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Gas</td> <td>C_{pm}° (311-298 K)</td> <td>C_{pm}° (533-298K)</td> </tr> <tr> <td>CH_4</td> <td>36.0483</td> <td>41.7800</td> </tr> <tr> <td>C_2H_6</td> <td>53.5240</td> <td>67.4954</td> </tr> <tr> <td>N_2</td> <td>29.1317</td> <td>29.3578</td> </tr> </table>	Gas	C_{pm}° (311-298 K)	C_{pm}° (533-298K)	CH_4	36.0483	41.7800	C_2H_6	53.5240	67.4954	N_2	29.1317	29.3578			
Gas	C_{pm}° (311-298 K)	C_{pm}° (533-298K)															
CH_4	36.0483	41.7800															
C_2H_6	53.5240	67.4954															
N_2	29.1317	29.3578															
Q.5	(a)	Give detailed classification of fuels	03	CO6	U												
	(b)	Define and explain the following terms: (i) Heat of formation (ii) Heat of combustion (iii) Heat of reaction (iv) Heat of solution	04	CO6	U												

	(c)	Define GCV and NCV for fuels. Give its importance. Also give the names of the equipment used for measuring CV of solid, liquid and gases	07	CO5	U
		OR			
Q.5	(a)	Describe proximate analysis of coal	03	CO6	U
	(b)	Explain: (i) Watson equation (ii) Riedel Equation.	04	CO6	U
	(c)	Discuss Ultimate analysis of coal. Give Dulong formula and Calderwood equation with nomenclature.	07	CO5	U
