GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-I (NEW) EXAMINATION – WINTER 2023

Subject Code:3110014	Date:11-01-2024
Subject Name: Mathematics - 1	

Subject Name: Mathematics - 1 Time: 02:30 PM TO 05:30 PM

Total Marks:70

- **Instructions:**
 - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
 - 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	Evaluate $\lim_{x\to 0^+} x \ln x$	03
	(b)	Define beta and gamma functions. What is the relationship between beta and gamma functions?	04
	(c)	Solve the following system of linear equations using Gauss-Jordan elimination:	07
		$x_3 + x_4 + x_5 = 0$ $-x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0$ $x_1 + x_2 - 2x_3 - x_5 = 0$ $2x_1 + 2x_2 - x_3 + x_5 = 0$	
Q.2	(a)	Define rank of the matrix. Find rank(A) if $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$	03
	(b)	Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$	04
	(c)	Find eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$	07

- OR
- (c) Find the Fourier series of the function $f(x) = x + \pi$ if $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$
- Q.3 (a) If $w = x^2 + y^2$, x = r s, y = r + s, using chain rule, prove that $\frac{\partial w}{\partial s} = 4s$.
 - (b) Find the directional derivative of $f(x, y, z) == 2x^2 + 3y^2 + z^2$ at point (2,1,3) in the direction of the vector $\mathbf{i} 2\mathbf{k}$.
 - (c) Find local extreme values of the function $f(x, y) = 4x^2 + 9y^2 + 8x 36y + 24$.

OR

- Q.3 (a) Determine whether $\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^3+y^3}$ exists and find it if exists.
 - (b) Find the equation of the tangent plane to $z = 3x^2 xy$ at the point (1,2,1).

	(c)	Find the maximum and minimum values of the function $f(x,y) = 3x + 4y$ on the circle $x^2 + y^2 = 1$.	07
Q.4	(a)	Calculate $\iint_R f(x, y) dA$ for $f(x, y) = 100 - 6x^2y$ and $R: 0 \le x \le 2, -1 \le y \le 1$	03
	(b)	Sketch the region of integration for the integral $\int_0^2 \int_{x^2}^{2x} (4x + 2) dy dx$ and write an equivalent integral with the order of integration reversed.	04
	(c)	Calculate $\iint_R \frac{\sin x}{x} dA$ where R is the triangle in the xy-plane bounded	07
		by the x-axis, the line $y = x$ and the line $x = 1$. OR	
Q.4	(a)	Evaluate $\int_1^{\ln 8} \int_0^{\ln y} e^{x+y} dx dy$.	03
	(b)	Find the area of the region R bounded by $y = x$ and $y = x^2$ in the first quadrant.	04
	(c)	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} (x^2 + y^2) dy dx$ by changing into polar coordinates.	07
Q.5	(a)	Find the Maclaurin series for $\cos x$.	03
	(b)	Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} ne^{-n^2}$.	04
	(c)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$.	07
		OR	
Q.5	(a)	Define monotonic sequence. Is the sequence $\left\{\frac{1}{n^2}\right\}$ monotonic?	03
	(b)	Investigate the convergence of the series $\sum_{n=0}^{\infty} \frac{2^{n}+5}{3^{n}}$.	04
	(c)	Find the interval of convergence of the series $x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$	07
