

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V EXAMINATION – WINTER 2025

Subject Code:3150501**Date:19-11-2025****Subject Name: Mass Transfer Operations I****Time: 10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS
Q.1	(a) Define: Plait point, selectivity and distribution coefficient in liquidliquid extraction	03
	(b) Discuss the factors affecting choice of separation method	04
	(c) Discuss in detail about Steady State Cocurrent processes	07
Q.2	(a) Explain mass transfer operation between two immiscible phases	03
	(b) Deduce an equation for molar flux for diffusion of component A through non-diffusing component B in case of steady state molecular diffusion for liquid phase	04
	(c) With neat sketch, explain spray tower and sparged vessel as G-L equipment in brief.	07
OR		
	(c) Explain the following terms with respect to tray towers: (i) Flooding (ii)Priming (iii) Coning (iv)Weeping (v) Dumping (vi)Tray Spacing (vii)Theoretical Tray	07
Q.3	(a) Compare N type flux and J type flux.	03
	(b) Compare Penetration theory with surface renewal theory with reference to molecular diffusion	04
	(c) Methane diffuses at steady state through a tube containing helium for the case equimolar counter diffusion. At point 1, the partial pressure of methane is 55 kPa and at point 2, 0.03 m apart is 15 kPa. The total pressure is 101.325 kPa and temperature is 298 k, at this temperature and pressure the value of diffusivity is $6.75 \times 10^{-5} \text{ m}^2/\text{s}$. Calculate the partial pressure of methane at point 0.02 m apart from point 1 for the above case	07
OR		
Q.3	(a) Explain mass, heat and momentum transfer analogies.	03
	(b) Classify gas-liquid mass transfer operations with principle.	04
	(c) Oxygen (A) is diffusing through carbon monoxide (B) under steady state condition with carbon monoxide non-diffusing. The total pressure is $1 \times 10^5 \text{ N/m}^2$ and temperature is 0°C . The partial pressure of oxygen at two planes 2.0 mm apart is respectively 13000 and 6500 N/m^2 . The diffusivity for the mixture is $1.87 \times 10^{-5} \text{ m}^2/\text{s}$. Calculate the rate of diffusion of oxygen in kmol/s through each square meter of the two planes	07
Q.4	(a) Define the following terms with respect to tray tower a) Priming b) Coning c) Weeping	03
	(b) Explain the characteristics of fill for packed tower	04
	(c) Explain “two resistance theory” briefly	07

OR

Q.4 (a) Define the following terms with respect to tray tower a) Flooding b) Dumping c) Tray Spacing **03**
(b) Explain mass, heat and momentum transfer analogies **04**
(c) Explain the prevention of vortex formation in mechanically agitated vessel. **07**

Q.5 (a) Define: a) Absorption factor b) Crystallization c) selectivity of solvent **03**
(b) Explain Meir's super saturation theory of crystallization. **04**
(c) Explain Ternary liquid- liquid equilibrium and tie line **07**

OR

Q.5 (a) Define: a) Recoverability of solvent b) absorption c) striping **03**
(b) Define super saturation and explain Meir's super saturation theory. Explain stages of crystallization. Explain stages or mechanism of crystallization. **04**
(c) Discuss the system of three liquids- one pair partially soluble and the effect of temperature on ternary equilibria. **07**
