



**GUJARAT TECHNOLOGICAL UNIVERSITY****BE- SEMESTER-V EXAMINATION – WINTER 2025****Subject Code:3150504****Date:02-12-2025****Subject Name: Instrumentation and Process Control****Time: 10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

|            |                                                                                                                                                                                                                                                       | <b>MARKS</b> |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| <b>Q.1</b> | (a) Discuss advantages of automatic control of a process.                                                                                                                                                                                             | <b>03</b>    |
|            | (b) Differentiate between Feedback and feed forward control system with example.                                                                                                                                                                      | <b>04</b>    |
|            | (c) Derive the transfer function of mercury thermometer. Determine the response equation of mercury thermometer for Ramp function.                                                                                                                    | <b>07</b>    |
| <b>Q.2</b> | (a) State and prove translation of transform.                                                                                                                                                                                                         | <b>03</b>    |
|            | (b) $\frac{d^2x}{dt^2} + 2 \frac{dx}{dt} + x = 1$<br>$x(0) = x'(0) = 0$<br>Solve the differential equation by Laplace transform                                                                                                                       | <b>04</b>    |
|            | (c) Derive the transfer function of Manometer in which pressure P is acting in one limb and other limb is open to the atmosphere.                                                                                                                     | <b>07</b>    |
|            | <b>OR</b>                                                                                                                                                                                                                                             |              |
|            | (c) Derive the transfer function for ‘loading’ system where second tank will be load by first tank.                                                                                                                                                   | <b>07</b>    |
| <b>Q.3</b> | (a) Differentiate between interacting and non-interacting system                                                                                                                                                                                      | <b>03</b>    |
|            | (b) Develop a transfer function relating the tank outlet temperature to changes in the inlet temperature considering mixed tank heater system                                                                                                         | <b>04</b>    |
|            | (c) For a second order transfer function with $\tau = 1$ and $\zeta = 0.8$ , being distributed with a sine wave input $3 \sin(0.5t)$ . Determine the form of the response after transient have decayed and steady state oscillations are established. | <b>07</b>    |
|            | <b>OR</b>                                                                                                                                                                                                                                             |              |
| <b>Q.3</b> | (a) Explain gain margin and phase margin.                                                                                                                                                                                                             | <b>03</b>    |
|            | (b) Differentiate between transfer lag and transportation lag.                                                                                                                                                                                        | <b>04</b>    |
|            | (c) Discuss Bode plot for first order system                                                                                                                                                                                                          | <b>07</b>    |
| <b>Q.4</b> | (a) Discuss the Nyquist stability criteria.                                                                                                                                                                                                           | <b>03</b>    |
|            | (b) Write in brief about PD controllers and its transfer function                                                                                                                                                                                     | <b>04</b>    |
|            | (c) Determine the stability criteria of the system shown below for which PI controller is used. Use $\tau_1 = 1$ , $\tau_2 = \frac{1}{2}$ , $\tau_3 = \frac{1}{3}$ , $K_c = 5$ and $\tau_l = 0.25$ .                                                  | <b>07</b>    |



**Q.4** (a) Write in brief about ON/OFF controller. **03**  
 (b) Derive the transfer function of PID control **04**  
 (c) For the control system diagram shown below. derive the transfer function  $C(s)/R(s)$  **07**



**Q.5** (a) Describe PLC, DCS, and SCADA in brief. **03**  
 (b) Explain dynamic characteristics of an instrument. **04**  
 (c) Explain construction and working of optical pyrometer. **07**

**OR**

**Q.5** (a) Explain working of wet bulb and dry bulb thermometer used for measurement of relative humidity. **03**  
 (b) Discuss the pitot tube for flow measurement. **04**  
 (c) Explain the principal, construction and working of bellows differential-pressure gauge. **07**

\*\*\*\*\*