

Enrollment No./Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering - SEMESTER - VII EXAMINATION - WINTER 2025

Subject Code: 3170502

Date: 26-11-2025

Subject Name: Process Equipment Design

Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Instructions

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	Marks
Q.1 (a) Differentiate between NPSHA and NPSHR.	03
(b) Discuss about non-destructive test for determination of welding joint efficiency in brief.	04
(c) Describe step wise procedure to calculate overall heat transfer coefficient in a shell and tube heat exchanger, employed to transfer the heat without phase change.	07
Q.2 (a) In a ABC private limited, management has decided to increase the production capacity of a existing plant. Being a Chemical Engineer, you need to suggest ways to maintain the purity of top and bottom without altering physical dimensions of a column. Support your answer with appropriate reasons.	03
(b) Describe the effect of reflux ratio on fixed, operating and total cost of distillation column.	04
(c) Estimate minimum reflux ratio for the feed defined by the compositions given in table below. The desired recovery of the light key component O in the distillation is 94.48%. The recovery of heavy key component P in the bottoms is 95.39%. Feed is at its bubble point. Total feed flow rate is 100 kmol/hr. Assume components lighter than the light key do not appear in bottom and components heavier than the heavy key do not appear in distillate.	07

Component	Feed mole fractions	Average relative volatility, a_i
M	0.10	2.30
N	0.13	1.75
O (LK)	0.25	1.45
P (HK)	0.23	1.00
Q	0.15	0.90
R	0.08	0.83
S	0.06	0.65

OR

(c) Lube-oil (flowrate 450 L/min) is to be cooled from 65 °C to 45 °C with the cooling water. Calculate, 07

(i) flow rate of cooling water.

(ii) tube side heat transfer coefficient.

Use following data for calculation purpose.

4-1 pass shell and tube heat exchanger

Shell side fluid = lube-oil, Tube side fluid = cooling water

Cooling water inlet temperature = 35 °C

Cooling water outlet temperature = 39 °C

Assume value of overall heat transfer coefficient of 400 W/m².°C.

Tube length = 10 ft

Tube outside diameter = 15.875 mm

Tube inside diameter = 13.3858 mm

LMTD correction factor = 0.95

Property	Lube-oil	Cooling water
Density, kg/m ³	869	993.328
Viscosity, cP	15	0.73
Specific heat, kJ/kg.°C	2.1413	4.1868
Thermal conductivity, W/m.°C	0.13	0.628

Q.3 (a) Describe function of following parts in a shell and tube heat exchanger: 1) Tube side pass partition plate, 2) Shell side pass partition plate, and 3) Tie rods. 03

(b) Discuss merits and demerits of air cooled heat exchanger over water cooled heat exchanger. 04

(c) Describe step wise design procedure for vertical thermosyphon reboiler. 07

OR

(a) Describe the function of baffles in a shell and tube heat exchanger. Also list various types of baffles used in a shell and tube heat exchanger. 03

(b) Discuss merits and demerits of U-tube heat exchanger over fixed tube sheet heat exchanger. 04

(c) Describe step wise design procedure for kettle type reboiler. 07

Q.4 (a) Define following terms: 1) Heavy key component, 2) Minimum reflux ratio, and 3) Weeping 03

(b) Describe merits and demerits of distillation columns operated under vacuum. 04

(c) Explain step wise procedure to calculate pressure drop in a sieve tray distillation column. 07

OR

(a) Explain the function of weir in a sieve tray tower. Also suggest the effect of weir height on separation efficiency and pressure drop. 03

(b) Explain the following terms: 1) Jet flooding and 2) Downcomer flooding 04

(c) Explain step wise procedure to calculate tower diameter in a sieve tray distillation column. **07**

Q.5 (a) Differentiate between Internal Design Pressure and External Design Pressure from mechanical design prospective. **03**

(b) Describe selection criteria between tray tower and packed tower for absorption. **04**

(c) Describe step wise procedure to calculate minimum solvent rate for a packed absorption column. Consider physical absorption of dilute gas mixture in an isothermal condition. **07**

OR

(a) Explain about stress-strain curve with a neat figure. **03**

(b) Describe the function of liquid distributor and liquid redistributor in a absorber. Also list various types of liquid distributors and liquid redistributors. **04**

(c) Describe step wise procedure for the design of a torispherical head. **07**
