

Enrolment No./Seat No_____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII EXAMINATION – WINTER 2025

Subject Code:3170507

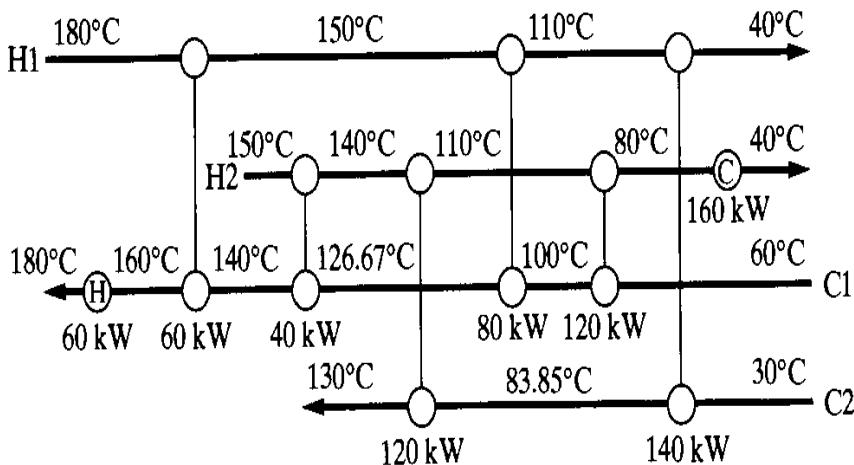
Date:13-11-2025

Subject Name:Computer Aided Process Synthesis

Time:10:30 AM TO 01:00 PM

Total Marks:70

Instructions:


1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

MARKS

Q.1 (a) Describe effect of ΔT_{\min} on utilities in heat exchanger network. **03**
 (b) Explain selection of operating pressure in distillation column. **04**
 (c) Decide the minimum utility target and pinch point using following stream data: Take $\Delta T_{\min} = 15$ K **07**

Stream	T^s K	T^t K	mC_p KW/K
H1	473	353	0.25
H2	523	313	0.15
C1	413	503	0.3
C2	293	453	0.2

Q.2 (a) Decide minimum no. of heat exchangers required for following network and find any one loop. **03**

(b) Explain generalized rules for stream splitting on both sides of the pinch to satisfy MER requirements. **04**
 (c) Design a heat exchanger network for above pinch using following data. Take $\Delta T_{\min} = 5$ °C, Minimum hot utility = 7.5 MW, Cold pinch temperature = 140 °C **07**

Stream	T^s °C	T^t °C	mC_p MW/°C
C1	20	180	0.2
H1	250	40	0.15
C2	140	230	0.3
H2	200	80	0.25

OR

(c) Design a heat exchanger network for below pinch using following data. Take $\Delta T_{\min} = 5^{\circ}\text{C}$, Minimum cold utility =10 MW, Cold pinch temperature =140 $^{\circ}\text{C}$ 07

Stream	$T^s \text{ } ^{\circ}\text{C}$	$T^t \text{ } ^{\circ}\text{C}$	$mC_P \text{ MW/ } ^{\circ}\text{C}$
C1	20	180	0.2
H1	250	40	0.15
C2	140	230	0.3
H2	200	80	0.25

Q.3 (a) Calculate number of possible sequences of distillation columns for 6 numbers of products and show direct and indirect sequence. 03
 (b) List statements of Engineering Ethics. 04
 (c) Predict the best sequences using following vapor rate data : 07

Separation	Vapor rate, kmol/hr	Separation	Vapor rate, kmol/hr
A/B	1594	B/CD	921
A/BC	1757	AB/CD	1129
A/BCD	1934	C/D	2632
B/C	694	BC/D	3017
AB/C	925	ABC/D	3245

OR

Q.3 (a) Show any three complex and thermally coupled distillation columns for ternary system. 03
 (b) List steps involved in Process Creation step during product and process design. 04
 (c) Predict the best sequences using following vapor rate data : 07

Separation	Vapor rate, kmol/hr	Separation	Vapor rate, kmol/hr
A/B	70	B/CD	90
A/BC	130	AB/CD	120
A/BCD	100	C/D	220
B/C	100	BC/D	250
AB/C	140	ABC/D	240

Q.4 (a) Explain node and saddle point in residue curve map. 03
 (b) Discuss heuristic for positioning of heat engine. 04
 (c) Explain the construction of attainable region. 07

OR

Q.4 (a) Explain any three conditions for most economical operation of ordinary distillation column. 03
 (b) Discuss heuristic for positioning of heat pump. 04
 (c) Explain reactor network design using attainable region for van de Vusse kinetics. 07

Q.5 (a) Construct FS, LSF and LSR for multiple effect distillation columns. 03
 (b) Discuss Overlapping operation and Non overlapping operation. 04
 (c) Develop Gantt charts for following data and solve for cycle time and makespan for single product campaigns (AAABBB) and mixed product campaigns (ABABAB) considering ZW transfer policy. 07

product	Stage 1	Stage 2
A	5	2
B	2	4

OR

Q.5 (a) Construct heat pumping, vapor recompression and reboiler flashing configuration in distillation column. **03**

(b) Discuss Single product campaigns and Mixed product campaigns. **04**

(c) Develop Gantt charts for following data and assuming zero cleanup time, determine the cycle time and makespan for zero wait policy and no intermediate storage policy for manufacturing of 2 batches of A, 1 of B and 1 of C. **07**

Product	Processing time (hr)		
	Stage 1	Stage 2	Stage 3
A	5	4	3
B	3	1	3
C	4	3	2
