Subject Code:BE01000041

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-I&II EXAMINATION – SUMMER 2025 Date:05-06-2025

Subject Name:Mathematics-I			
Time:10:30 AM TO 01:30 PM Total Marks:70			
Instructions:			
		Attempt all questions.	
	2. 3.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	
			Marks
Q.1	(a)	Investigate the convergence of $\int_0^1 \frac{1}{1-x} dx$.	03
	(b)	Define beta and gamma functions. What is the relationship between beta and gamma functions?	04
	(c)	The region between the curve	07
		$y = \sqrt{x}$, $0 \le x \le 4$ and the x-axis is revolved about the x-axis to generate a solid. Find its volume.	
Q.2	(a)	Evaluate $\lim_{x\to 0} \frac{3x-\sin x}{x}$ using L'Hospital rule.	03
	(b)	Find the Taylor series generated by $f(x) = e^x$ at $x = 2$.	04
	(c)	Find the Maclaurin series for $f(x) = (1 + x)^k$ where k is any real number. Using	07
	(C)	1	07
		it, find the Maclaurin series for the function $\frac{1}{1-x}$.	
		OR	
	(c)	Find the local extreme values of the function	07
	` '	$f(x) = 3x^4 - 2x^3 - 6x^2 + 6x + 1.$	
Q.3	(a)	Test the series $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ for convergence or divergence.	03
	(b)	Test the convergence of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$.	04
	(c)	Define absolutely convergent series and conditionally convergent series.	07
		Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$.	
OR			
Q.3	(a)	Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$.	03
	(b)	Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.	04
	(c)	For what values of x does the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ converge?	07
Q.4	(a)	If $f(x, y) = \frac{xy^2}{x^2 + y^4}$, does $\lim_{(x,y) \to (0,0)} f(x, y)$ exist?	03
	(b)	If $z = x^2y + 3xy^4$, where $x = \sin 2t$ and $y = \cos t$, find $\frac{dz}{dt}$ when $t = 0$.	04
	(c)	Find the extreme values of the function $f(x,y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.	07

- Q.4 (a) Find the equation of the tangent plane at the point (-2,1,-3) to the ellipsoid $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$.
 - (b) Find the directional derivative of the function $f(x, y) = x^2y^3 4y$ at the point (2, -1) in the direction of the vector $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$.
 - (c) Find the local extreme values of the function $f(x, y) = xy x^2 y^2 2x 2y + 4$.
- Q.5 (a) Evaluate $\int_0^3 \int_0^2 (4 y^2) dy dx$ 03
 - Evaluate $\iint_R (3x + 4y^2) dA$ where R is the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
 - (c) Sketch the region of integration, reverse the order of integration and evaluate the integral $\int_0^1 \int_x^1 \sin(y^2) dy dx$.

OR

- Q.5 (a) Evaluate the triple integral $\iiint_B xyz^2 dV$ where B is the rectangular box given by $B = \{(x, y, z): 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$.
 - **(b)** Find the area of the region R bounded by $y = 2x^2$ and $y^2 = 4x$.
 - (c) Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above the region R in the xy-plane bounded by the lines y = 2x and the parabola $y = x^2$.
