

Enrollment No./Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering - SEMESTER - VII EXAMINATION - WINTER 2025

Subject Code: 3170512

Date: 01-12-2025

Subject Name: Introduction to Computational Fluid Dynamics

Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Instructions

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	Marks
Q.1 (a) Define Computational Fluid Dynamics (CFD) and state any two engineering applications	03
(b) Explain the importance of governing equations in Computational Fluid Dynamics (CFD)	04
(c) Discuss Computational Fluid Dynamics (CFD) as an engineering analysis tool with a suitable illustration.	07
Q.2 (a) Define substantial derivative operator in vector notation and explain its physical significance.	03
(b) Discuss physical boundary conditions in Computational Fluid Dynamics (CFD) .	04
(c) Derive Navier–Stokes momentum equation for incompressible Newtonian fluid	07

OR

(c) Derive the substantial derivative and explain its importance in flow analysis	07
Q.3 (a) Define a quasi-linear partial differential equation with one suitable example.	03
(b) Explain the discriminant method ($B^2 - 4AC$) for PDE classification.	04
(c) Compare elliptic, parabolic and hyperbolic PDEs with their physical interpretation in Computational Fluid Dynamics (CFD).	07

OR

(a) Differentiate between structured and unstructured grid.	03
(b) Discuss the mathematical behaviour of parabolic PDEs with examples	04
(c) Explain the eigenvalue method for classification of first-order PDE systems	07
Q.4 (a) Define truncation error with an example.	03
(b) Compare explicit and implicit numerical approach.	04
(c) Explain Von Neumann stability method using suitable example.	07

OR

(a) Write the central difference formula for the first derivative $\partial u / \partial x$	03
---	----

(b) Give Classification of Quasi-Linear Partial Differential Equation. **04**

(c) Explain different types of numerical errors in Computational Fluid Dynamics (CFD) with suitable example. **07**

Q.5 (a) List three Computational Fluid Dynamics (CFD) applications in reactor design **03**

(b) Explain Computational Fluid Dynamics (CFD) application in agitator or mixing tank design. **04**

(c) Explain Computational Fluid Dynamics (CFD) based design and analysis procedure for a Plug Flow Reactor **07**

OR

(a) Write three Computational Fluid Dynamics (CFD) applications in furnace or combustion systems. **03**

(b) Describe the application of Computational Fluid Dynamics (CFD) in dryer design **04**

(c) Explain Computational Fluid Dynamics (CFD) based design and analysis procedure for a fluidized-bed reactor **07**
