

Enrolment No./Seat No_____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII EXAMINATION – WINTER 2025

Subject Code:3170514

Date:28-11-2025

Subject Name:Mechanical Design of Process equipments

Time:10:30 AM TO 01:00 PM

Total Marks:70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed

Q.1 (a) What is stiffening rings? When can it be used in pressure vessel design? **03**
(b) Write a technical note on “Radiography test” for pressure vessel. **04**
(c) What is flange joint? With neat sketch explain the different types of standard flanges used in industries. **07**

Q.2 (a) Differentiate between fatigue and creep. **03**
(b) Name the methods used to calculate the shell thickness under external pressure and discuss any one of them with necessary equations and design steps. **04**
(c) A Reactor (ID = 800 mm) with hemispherical head at the bottom. Inside working pressure is 75 kgf/cm² (g) & working temperature is 70 °C. Reactor is covered with plain jacket such that 75% length of shell & bottom hemispherical head is covered with jacket. Cooling water is circulated inside the jacket by pumping with a centrifugal pump having a shut off discharge pressure 6.0 kgf/cm²(g). The hemispherical head is fabricated from SA-516 Grade 70. The maximum allowable stress at design temperature is 610 kgf/cm². Modulus of Elasticity of plate material (E) = 193×10^3 N/mm². Poisson’s ratio (μ) = 0.3, ρ = 7.83 g/cm³. Joint efficiency (J) = 0.85. Take 3 mm corrosion allowance. Find:
(i) Thickness of the head and (ii) weight of the fabricated head.

OR

(c) Find out the thickness of shell & jacket for the (i) reactor with plain jacket and (ii) reactor with channel jacket. The data are given as follow.

Inside diameter of shell - 1500 mm, Inside diameter of jacket - 1600 mm, Shell length - 1500 mm, Diameter of half coil - 75 mm, Width of channel jacket - 75 mm, Internal design pressure for shell - 4 Kgf/cm², Internal design pressure for jacket - 3 Kgf/cm², Design temperature for shell and jacket - 150 C, Material of shell - SA 316 Gr 70, Maximum allowable stress at design temperature - 980 Kgf/cm², Modulus of elasticity - 19×10^5 kgf/cm², Poisson’s ratio - 0.3, Joint efficiency - 0.85. Take corrosion allowance as 1.5 to 3 mm.

Q.3 (a) State the uses of propeller, paddle and turbine agitator. **03**
(b) Discuss the purpose of providing reinforcement pad for nozzle. **04**
(c) With neat sketch explain the various types of jackets and discuss the design of channel jacket and half coil jacket for reaction vessel. **07**

OR

Q.3 Design a bracket support for reaction vessel based on given data. Brackets are welded with outside surface of the reactor shell. OD of reactor shell = 1052.7 mm, Thickness of the shell = 6.35 mm, Height of the vessel = 2.1524 m, Clearance from vessel bottom to foundation = 0.75 m, Weight of vessel with contents = 3918.9 kg, Wind pressure = 100 kgf/m², No of brackets = 4, Diameter of bolt circle = 1202.7 mm, Size of base plate for bracket = 150 mm x 150 mm, Height of the C channel from foundation = 2.0264 m, Size of C channel = 150 mm x 75 mm, Area of cross section = 20.88 cm², Modulus of section = 19.4 cm³, Radius of gyration = 2.21 cm, MOC for support = IS 800, Max. allowable tensile stress = 1400 kgf/cm², Max. allowable compressive stress = 1233 kgf/cm², Max. allowable bending stress = 1575 kgf/cm² 14

Q.4 (a) State the industrial applications of different types of storage tanks. 03
(b) Why permanent vent is provided in storage tank? State the advantages and disadvantages of external roof tank over internal floating roof tank. 04
(c) Discuss the design steps for the selection of rafter, girder and column used for column supported conical roof. 07

OR

Q.4 (a) State the purpose of providing reinforcement pad for nozzle. 03
(b) Discuss about normal and emergency venting system for storage vessel. 04
(c) Discuss the mechanical design of tube and tube sheet under internal & external pressure for a shell and tube heat exchanger. 07

Q.5 (a) Name the various types of stresses induced in the shell of distillation column. 03
(b) When skirt support is used for pressure vessel? State any two advantages of skirt support over bracket support. 04
(c) What is tray support? Write a short note on different types of tray supports used for distillation column. 07

OR

Q.5 Distillation is carried out in a packed tower under vacuum. Determine the thickness and weight of shell based on the following given data. 14

Shell ID = 1500 mm, Length of Shell - 15 m, External design pressure - 101.325 kPa, Design temperature - 200°C, Shell and head material - SA 240 GrS type 304, Type of Shell Plate join - Double welded butt joint with 10% radiography, Nos. of packing sections - 5, Height of each packing section - 2.5 m, Top disengaging space - 1.2 m, Type of Packing - 25 mm S.S. pall rings, Weight of Packing per m³ - 480 kg, % void space - 94%, Density of liquid - 1100 kg/m³, Weight of attachment (pipes, ladders & platform) - 150 kg/m, Wind pressure - 981 N/m², Insulation thickness - 50 mm, Density of insulation - 500 kg/m³, Density of SA 240 GrS type 304 - 7800 kg/m³, Maximum allowable stress of shell or head plate material - 104.12 N/mm² (tensile), Modulus of elasticity of plate material - 2×10^5 N/mm², Poissons ratio of plate material - 0.3, Neglect the stress created by eccentric load and seismic load.
