Seat No.: _____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

		DE CEMECERE LA HANNEY EN AMBARRON CHAMPER 2022		
BE- SEMESTER-I & II(NEW)EXAMINATION – SUMMER 2022 Subject Code:3110014 Date:02-08-2				
•				
•		Name:Mathematics - 1	.170	
1 ime Instru		:30 AM TO 01:30 PM Total Mai	rks:/U	
HISTFU		Attempt all questions.		
		Make suitable assumptions wherever necessary.		
		Figures to the right indicate full marks.		
	4.	Simple and non-programmable scientific calculators are allowed.	Marks	
0.1				
Q.1	(a)	Is $\sum_{n=1}^{\infty} \frac{1}{n^p}$ convergent for $p > 1$? Justify your answer.	03	
	(b)	(1) Find $\lim_{x\to a} \frac{\sin x - \sin a}{(x-a)^2}$	02	
		(1) I find $\lim_{x\to a} (x-a)^2$		
		(2) Is $\int_{0}^{\infty} \frac{\sin^2 x}{x^2}$ convergent? Justify your answer.	02	
	(c)	(1) Find the length of curve	04	
	` ′	$f(x) = \frac{x^3}{12} + \frac{1}{x}, \ 1 \le x \le 4.$		
		$f(x) = \frac{1}{12} + \frac{1}{x}, \ 1 \le x \le 4.$		
		(2) Prove that	03	
		Gamma(n) = (n-1)Gamma(n-1).	03	
Q.2	(a)	Investigate the convergence of $\sum_{1}^{\infty} \frac{n^2}{7^n}$.	03	
	(b)	$\sum_{n=0}^{\infty} 2^n (n!)^2$	04	
		Investigate the convergence of $\sum_{n=1}^{\infty} \frac{2^{n} (n !)^{2}}{(2n) !}$		
	(c)	Find Fourier series of $f(x) = x^2, -\pi < x < \pi$.	07	
		OR		
	(c)	f(x) = x, -1 < x < 0	07	
		Find Fourier series of $f(x) = x, -1 < x < 0$ $= 2, 0 < x < 1$		
Q.3	(a)	Find the derivative of $f(x, y) = x^2 + xy + y^2$ in the direction $\hat{i} + \hat{j}$ at $P(1,1)$.	03	
	(b)	Find the tangent plane of $z = e^x \cos y$ at $P(0,0,0)$.	04	
	(c)	Find local extreme values of $f(x, y) = xy - x^2 - y^2 - x$.	07	
	` /	OR		
Q.3	(a)	Explain second derivative test for local extreme values.	03	
	(b)	Let $f = \ln r$, where $\bar{r} = x \hat{i} + y \hat{j} + z \hat{k}$ and $r = \bar{r} $. Find grad f .	04	
	(c)	Determine the minimum value of x^2yz^2 subject to the condition	07	
		x + y + 2z = 5 using method of Lagrange multipliers.		
0.4	()		0.2	

Q.4 (a) Evaluate $\int_{y=0}^{1} \int_{x=0}^{2} \frac{1}{\sqrt{4-x^2}\sqrt{1-y^2}} dxdy$.

1

	(b)	Evaluate the integral $\int_{0}^{2} \int_{x/2}^{1} \frac{1}{3} e^{y^2} dy dx$	04
	(c)	by change of order. (1) Find the area of the region covered by $x = 1$, $x = 4$, $y = 0$ and $y = \sqrt{x}$.	04
		(2) Evaluate $\int_{x=0}^{1} \int_{y=0}^{x^{1/4}} \int_{z=0}^{y^2} \sqrt{z} dz dy dx$	03
Q.4	(a)	OR Evaluate II ry dA where P is the region	03
V. .	(u)	Evaluate $\iint_R xy \ dA$ where R is the region	00
		bounded by x axis, the ordinate $x = 2a$ and the curve $x^2 = 4ay$.	
	(b)	Evaluate the integral $\int_{y=0}^{1} \int_{x=0}^{\cos^{-1} y} e^{\sin x} dx dy$ by change of order.	04
	(c)	(1) Change in to polar coordinates then solve $\int_{0}^{2} \int_{0}^{\sqrt{4-x^2}} e^{-(x^2+y^2)} dy dx.$	04
		(2) Let $x + y = u$ and $y = uv$ are given transformations. Find Jacobian for change of variables.	03
Q.5	(a)		03
		Find characteristic equation of $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 1 \\ 2 & 0 & 1 \end{bmatrix}$.	
	(b)	Find Maclaurin's series for $f(x) = e^{2x} \sinh x$ and show at least up to x^4	04
	(c)	term. Solve	07
	(C)	x + y + w = 1, $2x + z + w = 3$, $2y + z + 2w = 2$.	U7
0.5	()	OR	0.2
Q.5	(a)	Show that give matrix $A = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix}$ satisfies its Characteristic	03
	(b)	equation.	0.4
	(b)	Show that $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$ converges.	04
	(c)	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	07
		Show that $A = \begin{bmatrix} 0 & 1 & 0 \\ -2 & -1 & 2 \\ -4 & -8 & 7 \end{bmatrix}$ is diagonalizable. Find the matrix of	
		eigen vectors and diagonal matrix.	
