

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-IV EXAMINATION – WINTER 2025****Subject Code:3141002****Date:13-11-2025****Subject Name:Analog Circuit Design****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS
Q.1	(a) Define following terms. SVRR, Slew Rate, Input Offset Voltage.	03
	(b) Draw and explain VTC of OP-AMP.	04
	(c) Explain OP-AMP functionality as comparator.	07
Q.2	(a) Derive gain expression for inverting closed loop amplifier using OP-AMP.	03
	(b) Explain subtractor using OP-AMP.	04
	(c) Write and explain sample and hold amplifier using three OP-AMP.	07
	OR	
	(c) Explain peak detector circuit operation using OP-AMP.	07
Q.3	(a) Explain circuit made up of OP-AMP that does scaling of inputs.	03
	(b) Explain band pass filter using OP-AMP.	04
	(c) Explain 2 nd order low pass butter worth filter using OP-AMP with derivations.	07
	OR	
Q.3	(a) Define following terms. Lock and Capture Range for PLL, Frequency Stability for Oscillators.	03
	(b) Explain class B power amplifier.	04
	(c) Draw and explain saw tooth wave generator using OP-AMP.	07
Q.4	(a) Explain I to V converter using OP-AMP.	03
	(b) Explain phase shift oscillator using OP-AMP in detail.	04
	(c) Explain CE short-circuit current gain with resistive load R_L .	07
	OR	
Q.4	(a) Explain voltage limiter circuit using OP-AMP with suitable example.	03
	(b) Draw and explain class AB power amplifier.	04
	(c) Derive relationship between expressions of h-parameter and Hybrid – Π model.	07
Q.5	(a) Design Monstable multivibrator for $T_P = 11$ millisecond, take $C = 0.01$ microferad.	03
	(b) Write short note on voltage regulator.	04
	(c) Explain applications of A-stable multivibrator using Timer IC.	07
	OR	
Q.5	(a) Explain Schmitt trigger circuit using OP-AMP.	03
	(b) Design A-stable multivibrator using IC 555 for $T_{on} = 50\%$ of T , take $F = 10$ KHz, $C = 0.01$ microferad.	04
	(c) Explain block diagram of IC 555 timer.	07
