

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-IV EXAMINATION – WINTER 2025****Subject Code:3141009****Date:24-11-2025****Subject Name:Electromagnetic Theory****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) Define 1) Divergence, 2) Gradient and 3) Curl (b) Prove that the divergence of curl of any vector field is zero. (c) Derive an equation of electric field due to surface charge distribution.	03 04 07
Q.2	(a) Given vectors $A = 3a_x + 4a_y + a_z$ and $B = 2a_y - 5a_z$, find angle between vector A and B. (b) State and explain Gauss's Law. (c) What is the application of Poynting's Theorem? Derive its equation for total power leaving the volume.	03 04 07
	OR	
	(c) Derive and sketch the standing wave pattern when the intrinsic impedance of medium 1 is less than medium 2 ($\eta_1 < \eta_2$).	07
Q.3	(a) Explain Electric Field Intensity. (b) Briefly describe magnetic boundary condition between two different media. (c) Draw the equivalent circuit of the transmission line and derive its voltage and current equations.	03 04 07
	OR	
Q.3	(a) Write Maxwell's equation in differential form and integral form for static electric and magnetic fields. (b) State and prove Stokes's Theorem. (c) Write short note on wave propagation in good conductor.	03 04 07
Q.4	(a) Compare Cartesian and Cylindrical coordinate systems. (b) Obtain the expression of impedance for a lossless transmission line terminated in short circuit. (c) Explain the boundary condition between two dielectric material having permittivity ϵ_1 and ϵ_2 .	03 04 07
	OR	
Q.4	(a) Define following terms: 1. Standing wave ratio 2. Reflection coefficient 3. Characteristic impedance (b) State and explain Faraday's Law. (c) Explain Pulse Broadening in Dispersive Media.	03 04 07
Q.5	(a) Explain Lorentz Force equation. (b) How electric dipole is formed? Derived an equation of electric field due to electric dipole.	03 04

- (c) Write short note on loss less and distortion less transmission line. **07**
- OR**
- Q.5** (a) Derive an equation for variation in flux by moving loop in static magnetic field. **03**
- (b) State and derived the Biot-Savart Law. **04**
- (c) Write a short note on Smith Chart **07**
