

Enrollment No./Seat No.:

## GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering - SEMESTER - V EXAMINATION - WINTER 2025

**Subject Code: 3151107**

**Date: 19-11-2025**

**Subject Name: Advance Microcontroller**

**Time: 10:30 AM TO 01:00 PM**

**Total Marks: 70**

### Instructions

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

|                                                                                                              | <b>Marks</b> |
|--------------------------------------------------------------------------------------------------------------|--------------|
| <b>Q.1 (a)</b> Write three features of the ARM processor family.                                             | <b>03</b>    |
| <b>(b)</b> What is the RISC design philosophy?                                                               | <b>04</b>    |
| <b>(c)</b> Describe the ARM design philosophy in detail. Explain why ARM became popular in embedded systems. | <b>07</b>    |
| <b>Q.2 (a)</b> What is endianness? Differentiate between little-endian and big-endian.                       | <b>03</b>    |
| <b>(b)</b> Write a short note on ARM7TDMI interface signals.                                                 | <b>04</b>    |
| <b>(c)</b> Discuss pipeline hazards in ARM processors and explain how data forwarding helps overcome them.   | <b>07</b>    |

### OR

|                                                                                     |           |
|-------------------------------------------------------------------------------------|-----------|
| <b>(c)</b> Describe the ARM memory map and load-store architecture with an example. | <b>07</b> |
| <b>Q.3 (a)</b> Differentiate between a processor core and a CPU core.               | <b>03</b> |
| <b>(b)</b> Explain following instructions. 1.SWP R0, R1, [R2] 2.MOV R0, R1, LSL R2  | <b>04</b> |
| <b>(c)</b> Explain ARM program control flow instructions (B, BL, BX) with examples. | <b>07</b> |

### OR

|                                                                                                                  |           |
|------------------------------------------------------------------------------------------------------------------|-----------|
| <b>(a)</b> Explain working of various multiply instructions in ARM with proper example.                          | <b>03</b> |
| <b>(b)</b> Describe following instructions with suitable example. (1) LDMIA R1, {R2-R10} (2) LDMDB R1!, {R2-R10} | <b>04</b> |
| <b>(c)</b> Discuss ARM exception handling mechanism with reset example.                                          | <b>07</b> |
| <b>Q.4 (a)</b> Define pointer aliasing in Embedded C. Why is it a concern?                                       | <b>03</b> |
| <b>(b)</b> Explain how inline functions differ from normal functions in ARM C. Give an example.                  | <b>04</b> |
| <b>(c)</b> Compare SPI and I2C in terms of protocol, speed, and usage in ARM Embedded C.                         | <b>07</b> |

### OR

|                                                                     |           |
|---------------------------------------------------------------------|-----------|
| <b>(a)</b> Describe following assembler directives: ENTRY, ADR, DCD | <b>03</b> |
|---------------------------------------------------------------------|-----------|

**(b)** Why FIQ response is fast than IRQ response in ARM processor? Explain necessity of FIQ with one example. **04**

**(c)** List optimization techniques of Embedded C Programming. Explain any three techniques in detail with examples. **07**

**Q.5** **(a)** Explain ARM MPU (Memory Protection Unit) with an example. **03**

**(b)** Compare unified cache and split cache. **04**

**(c)** Explain hierarchical memory organization in ARM systems and the role of each level. **07**

**OR**

**(a)** Differentiate between paging and segmentation. **03**

**(b)** Differentiate AHB and APB bus transfers. **04**

**(c)** Compare Cortex-M, Cortex-R, and Cortex-A in the context of AMBA interconnect usage. **07**

\*\*\*