

Enrolment No./Seat No_____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV EXAMINATION – SUMMER 2025

Subject Code:3141009

Date:19-05-2025

Subject Name: Electromagnetic Theory

Time: 10:30 AM TO 01:00 PM

Total Marks:70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) Explain Lorentz Force Equation. (b) Compare Cartesian and Cylindrical coordinate system (c) Derive the expression for the electric flux density due to infinite line charge placed on the z-axis.	03 04 07
Q.2	(a) Explain the concept of retarded potential. (b) Explain properties of Smith Chart. (c) Draw the equivalent circuit of the transmission line and derive its voltage and current equations.	03 04 07
	OR	
Q.3	(c) State and prove Ampere's Circuital Law. (a) State Stoke's theorem and Divergence theorem. (b) Derive continuity equation. (c) Write short note on wave propagation in good conductor.	07 03 04 07
	OR	
Q.3	(a) Write Maxwell's equation in integral form for static electric and magnetic fields (b) Explain VSWR and Reflection coefficient. (c) Given three charge distributions in free space: 0.25nC/m on the line $x=3, y=2$; -0.2nC/m on the line $z=1, y=3$ and a point charge of 0.5nC at origin. Find electric field intensity at point $(2,3,4)$.	03 04 07
Q.4	(a) State and explain Biot-Savart's law. (b) Explain spherical coordinate system. (c) Using Biot-Savart law, find the vector magnetic field intensity in Cartesian coordinate at $P(1.5,2,3)$ caused by a current filament of 24A in the a_z direction on z-axis and extending from $z=0$ to $z=6$.	03 04 07
	OR	
Q.4	(a) Explain concept of conduction and convection current. (b) Prove that curl of gradient of any scalar is zero. (c) Obtain the expression of impedance for a lossless transmission line terminated in short circuit.	03 04 07
Q.5	(a) Define and explain characteristic impedance. (b) State Gauss's law and give its mathematical expression (c) Write a note on Wave Reflection from Multiple Interfaces.	03 04 07
	OR	
Q.5	(a) Write Maxwell's equation in differential form for static electric	03

and magnetic fields

(b) Prove that divergence of curl of any vector is zero. **04**
(c) Write a short note on Plane Wave Reflection at Oblique
Incidence Angle. **07**

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER-IV (NEW) EXAMINATION – SUMMER 2024****Subject Code:3141009****Date:03-07-2024****Subject Name: Electromagnetic Theory****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

Q-1	(a) Define; Field, DOT and CROSS product.	3
	(b) Transform the following vectors to spherical coordinates at the points given: (a) $10\mathbf{a}_x$ at $P(x = -3, y = 2, z = 4)$ (b) $10\mathbf{a}_z$ at $M(r = 4, \Theta = 110^\circ, \phi = 120^\circ)$.	4
	(c) Explain gradient of a scalar. Write fundamental properties of the gradient of a scalar field.	7
Q-2	(a) State and explain Coulombs law.	3
	(b) Explain Electric field intensity with necessary equations.	4
	(c) Three infinite uniform sheets of charge are located in free space as follows: 3 nC/m^2 at $z = -4$, 6 nC/m^2 at $z = 1$, and -8 nC/m^2 at $z = 4$. Find \mathbf{E} at the points; (a) $P_A(2, 5, -5)$; (b) $P_B(4, 2, -3)$; (c) $P_C(-1, -5, 2)$; (d) $P_D(-2, 4, 5)$.	7
	OR	
	(c) Derive expression of Electric field intensity due to line charge along z-axis.	7
Q-3	(a) Define potential and potential difference.	3
	(b) An Electric field is expressed in rectangular coordinates by $\mathbf{E} = 6x^2\mathbf{a}_x + 6y\mathbf{a}_y + 4\mathbf{a}_z \text{ V/m}$. Find: (a) V_{MN} if points M and N are specified by $M(2, 6, -1)$ and $N(-3, -3, 2)$; (b) V_M if $V = 0$ at $Q(4, -2, -35)$.	4
	(c) State and prove gauss's law.	7
	OR	
Q-3	(a) What is equipotential surface?	3
	(b) If 15 nC point charge is at the origin in free space. Calculate V_1 if point p_1 is located at $P_1(-2, 3, -1)$ and : (a) $V = 0$ at $(6, 5, 4)$; (b) $V = 0$ at infinity.	4
	(c) State and prove divergence theorem.	7
Q-4	(a) A uniform plane wave in air is normally incident onto a lossless dielectric plate of thickness $\lambda/8$ and of intrinsic impedance $\eta = 260 \Omega$. Determine standing wave ratio of in front of the plate.	3
	(b) Write Maxwell's equations in point and integral form.	4
	(c) State and explain Faraday's law.	7
	OR	
Q-4	(a) The electric field amplitude of a uniform plane wave propagating in the \mathbf{a}_z direction is 250 V/m . If $\mathbf{E} = E_x\mathbf{a}_x$ and $\omega = 1.00 \text{ Mrad/s}$, find: (a) The frequency; (b) The wavelength; (c) The period.	3
	(b) State Ampere's Circuital Law.	4
	(c) Write short note on plane wave propagation in general dielectrics.	7

Q-5	(a)	Write applications of transmission lines.	3
	(b)	What do you mean by impedance matching? Explain.	4
	(c)	Explain voltage standing wave ratio (VSWR) with necessary equations.	7

OR

Q-5	(a)	What is skin effect?	3
	(b)	Write transmission line equations and their solutions in phasor form.	4
	(c)	Write short note on lossless and low-less propagation.	7

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER- IV(NEW) EXAMINATION – SUMMER 2023****Subject Code:3141009****Date:19-07-2023****Subject Name:Electromagnetic Theory****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) Explain the difference between vector and vector field with example. (b) Write the various applications of Dot Product and Vector Product. (c) What is electric field intensity? Write the expression of electric field intensity due to infinite line charge and explain its significance.	03 04 07
Q.2	(a) Transform the vector $A = 20 a_z$ into spherical coordinate system at point P (4, 110°, 120°) (b) Derive mathematical equation of electric field intensity due to a continuous volume charge distribution and explain the dependency of field on various parameters of the field. (c) Find the volume charge density that is associated with $D = \rho z^2 \sin^2 \phi a_\rho + \rho z^2 \sin \phi \cos \phi a_\phi + \rho^2 z \sin^2 \phi a_z \text{ C/m}^2$ OR Given the field $D = 6\rho \sin(\phi/2) a_\rho + 15\rho \cos(\phi/2) a_\phi \text{ C/m}^2$, evaluate both sides of the divergence theorem for the region defined $\rho = 2$, $0 < \phi < 180^\circ$, $0 < z < 5$.	03 04 07 07
Q.3	(a) What is the use of coordinate system? Write the expressions of unit surfaces and unit volume of cylindrical coordinate system. (b) State and explain divergence. (c) Find E at P(1,5,2) m in free space if a point charge of 3 μC is located at (0,0,1), the uniform line charge density is 90 nC/m along x-axis and uniform sheet of charge density 50 nC/m ² over the plane z = -1.	03 04 07
	OR	
Q.3	(a) State and explain Gauss's Law in brief. (b) Explain the potential gradient and the conservative field. (c) Given the potential field in cylindrical coordinate $V = 500 \phi + 25 \text{ V}$. Calculate the value at P (5, 30°, 1) in air (i) E (ii) D and (iii) ρ_v	03 04 07
Q.4	(a) Write and explain Lorentz Force equation. (b) Explain the reflection of uniform plane wave at normal incidence. (c) A filamentary current of 20A is directed in from infinity to the origin on the positive x axis, and then back out to infinity along the positive y axis. Use the Biot-Savart law to find H at P (0,0,1)	03 04 07
	OR	
Q.4	(a) Compare magnetic scalar and vector potential. (b) Explain the curl. (c) A surface current density, $K = 10 a_x \text{ A/m}$, flows in the y = 0 plane throughout the region, $-5 < z < 5$, $-\infty < z < \infty$. Find H at P (0,10,0) in free space.	03 04 07
Q.5	(a) Write and explain the Maxwell's equations in point form.	03

(b) Explain double stub lines impedance matching method of transmission line. **04**

(c) Write short note on electromagnetic waves in perfect dielectric. **07**

OR

Q.5 **(a)** Explain skin effect. **03**

(b) Define and explain wave polarizations. **04**

(c) What are the applications of transmission line? Write the equations of transmission lines and their solutions in phasor form. **07**

GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER-IV (NEW) EXAMINATION – SUMMER 2022

Subject Code:3141009**Date:04-07-2022****Subject Name:Electromagnetic Theory****Time:10:30 AM TO 01:00 PM****Total Marks: 70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) 'The divergence of curl of vector magnetic potential is zero'-Justify the statement.	03
	(b) Find the rectangular coordinates of the point A ($\rho = 4.4$, $\varphi = -115^\circ$ $z=2$).	04
	(c) What is divergence? Explain the physical significance of divergence with two examples.	07
Q.2	(a) Find the $a_x \cdot a_\phi$ and $a_z \cdot a_\theta$	03
	(b) What is electric field intensity? Derive mathematical equation of electric field intensity due to a continuous volume charge distribution.	04
	(c) A uniform line charge density of 5 nC/m is at $y = 0$, $z = 2 \text{ m}$ in free space, while -5 nC/m is located at $y = 0$, $z = -2 \text{ m}$. A uniform surface charge density of 0.3 nC/m^2 is at $y = 0.2 \text{ m}$ and -0.3 nC/m^2 is at $y = -0.2 \text{ m}$. Find E at the origin.	07
	OR	
	(c) Given the flux density $D = (\cos\theta/r^3) a_r + (5\sin\theta/r^3) a_\theta \text{ C/m}^2$, evaluate both sides of the divergence theorem for the region defined by $1 < r < 2$, $0 < \theta < \pi/2$, $0 < \phi < \pi$	07
Q.3	(a) What is the use of coordinate system? Explain the Cartesian coordinate system in brief.	03
	(b) State and explain Gauss's Law.	04
	(c) Write Maxwell's equations in integral form and explain physical significance of equations.	07
	OR	
Q.3	(a) State and explain Ampere's circuital Law in brief.	03
	(b) Derived the desired distance field for the dipole.	04
	(c) Write Maxwell's equations in point form and explain their physical significance.	07
Q.4	(a) Explain Skin effect.	03
	(b) Explain the reflection of uniform plane wave at normal incidence.	04
	(c) Current filaments of $2 a_x \text{ A}$ lies along x axis. Find H components at B (-1, 3, 2).	07
	OR	
Q.4	(a) Compare spherical and Cylindrical coordinate systems.	03
	(b) State and explain Stoke's theorem.	04
	(c) For magnetic vector potential $A = -r^2/2 a_z \text{ Wb/m}$ calculate the total flux crossing the surface $\varphi = \pi/2$, $2 \leq r \leq 4 \text{ m}$, $0 \leq z \leq 4 \text{ m}$.	07

Q.5 (a) What is smith chart? What are its uses? **03**
(b) Explain one of the impedance matching methods of transmission line. **04**
(c) Write short note on plane wave reflection at oblique incidences angles. **07**

OR

Q.5 (a) Define and explain voltage standing wave ratio. **03**
(b) Define and explain hall effect. **04**
(c) What are the applications of transmission line? Write the equations of transmission lines and their solutions in phasor form. **07**
