

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-III EXAMINATION – WINTER 2025****Subject Code:3131101****Date:12-12-2025****Subject Name: Control Systems****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) Explain standard test signals. (b) Compare time response and frequency response of system. (c) Explain any 7 rules of block diagram reduction technique.	03 04 07
Q.2	(a) Write advantages of state space approach over classical methods. (b) Discuss the effect of adding a pole to a closed loop transfer function. (c) Explain Mason's Gain Formula with suitable example	03 04 07
	OR	
	(c) Write a short note on state space representation of a control system.	07
Q.3	(a) Explain in brief about PID controller. (b) Discuss force voltage (F-V) analogous system with analogous quantity. (c) Explain the steps of root locus	03 04 07
	OR	
Q.3	(a) Explain in brief about PD controller. (b) Discuss force current (F-I) analogous system with analogous quantity. (c) Explain nature of Bode plot for i) Poles at the origin ii) Zeros at the origin.	03 04 07
Q.4	(a) Find Laplace transform of $x(t) = \cos 2t$ (b) Explain, how the gain and phase margin are obtained from Nyquist plots? (c) Explain Phase-Lag compensator in detail.	03 04 07
	OR	
Q.4	(a) Find Laplace transform of $x(t) = \sin 2t$ (b) Explain polar plot with suitable example. (c) Explain Phase-Lead compensator in detail.	03 04 07
Q.5	(a) Define: State, State variable, State trajectory. (b) Define steady state error and obtain its formula (c) Discuss unit step response of first order system.	03 04 07
	OR	
Q.5	(a) Define i) Gain Margin ii) Frequency response iii) Phase Margin (b) Obtain equation of peak time for a second order control system when subjected to unit step input. (c) Discuss impulse response of second order system.	03 04 07

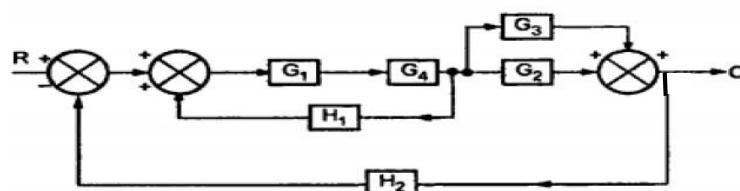
Enrolment No./Seat No_____

GUJARAT TECHNOLOGICAL UNIVERSITY
BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2024

Subject Code: 3131101

Date: 26-11-2024

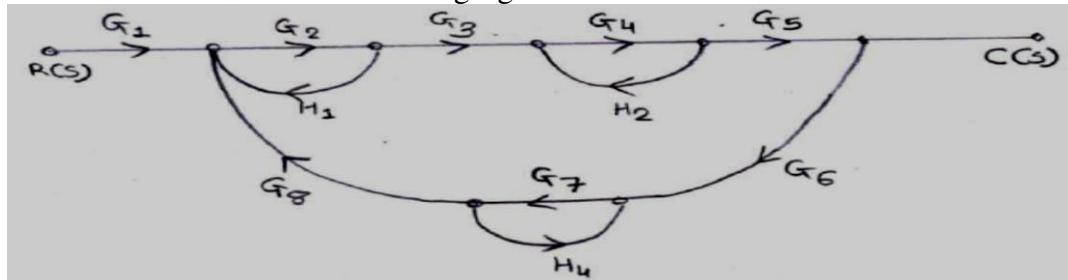
Subject Name: Control Systems


Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.


Q.1	Marks
(a) Define standard test signals.	03
(b) Determine the transfer function for the following system.	04

Q.1	(c) Compare open loop control system and closed loop control system with suitable examples.	07
Q.2	(a) State advantages and limitations of Routh stability criterion.	03
	(b) Discuss Nyquist criteria for stability.	04
	(c) Derive the expression of a second order control system subjected to unit step signal.	07
	OR	
	(c) Derive the expression of a first order control system subjected to unit step signal.	07
Q.3	(a) Discuss the effect of feedback on stability.	03
	(b) Compare time response and phase response of the system.	04
	(c) Derive the expressions for the error coefficients k_p , k_v and k_a corresponding to step, ramp and parabolic input respectively.	07

OR

Q.3	(a) Discuss the effect of feedback on time constant.	03
	(b) Obtain the expression of steady state error.	04
	(c) Find the transfer function of the following fig.	07

Q.4	(a) Define i) Rise time ii) Peak time iii) Settling time	03
	(b) Explain Force Voltage analogy.	04
	(c) Sketch the complete root locus of system having	07
	$G(s) H(s) = \frac{K}{s(s+1)(s+3)}$	

OR

Q.4 (a) Define i) Gain Margin ii) Frequency response iii) Phase Margin **03**
(b) Explain Force Current analogy. **04**
(c) State root locus techniques rules. **07**

Q.5 (a) What is transfer function? Discuss its properties. **03**
(b) Explain polar plot with example **04**
(c) State and explain compensator. Explain Phase-Lead compensator in detail. **07**

OR

Q.5 (a) Discuss briefly PID controller. **03**
(b) Explain steps of bode plot. **04**
(c) Write a short note on state space representation of a control system. **07**

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2023

Subject Code:3131101**Date:16-01-2024****Subject Name:Control Systems****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	MARKS
Q.1	03
(a) Define: Transfer function, Self loop, Steady-state error.	03
(b) Compare block-diagram and signal flow graph method.	04
(c) Explain rules for block-diagram reduction technique.	07
Q.2	03
(a) Discuss Nyquist criteria for stability.	03
(b) Derive the expressions for error constants K_p , K_v and K_a corresponding to step, ramp and parabolic input respectively.	04
(c) Reduce the given block-diagram of figure.1 to its simple form and hence obtain the equivalent transfer function $\frac{C(s)}{R(s)}$.	07

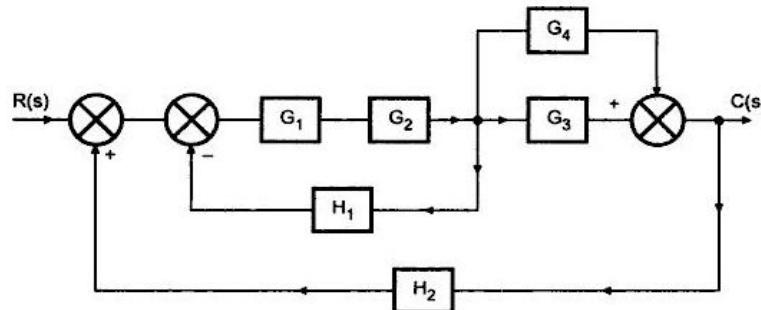


Figure.1

OR

Q.3	(c) Derive expressions of (i) Rise time, t_r (ii) Peak time, t_p and (ii) Peak overshoot, M_p for a second order control system subjected to a unit step input.	07
Q.3	(a) Explain: Frequency response, Root locus, Centroid.	03
	(b) Write short note on PID controller.	04
	(c) Obtain the transfer function $\frac{Y(s)}{X(s)}$ of the signal flow graph shown in figure 2.	07

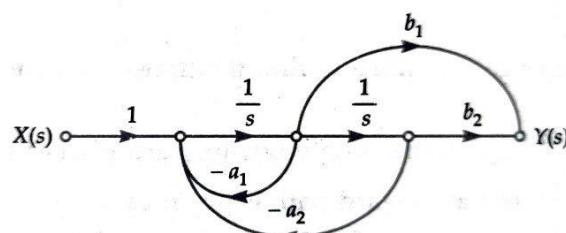


Figure.2

OR

Q.3 (a) What is polar plot? **03**
(b) Conclude Usefulness of analogues system and explain Force (Torque)- Voltage Analogy. **04**
(c) Determine the stability of a system having the characteristic equation **07**
 $s^6+5s^5+11s^4+25s^3+36s^2+30s+36=0$.

Q.4 (a) Derive an expression for the rise time for a 2nd order control system subjected to a unit step input. **03**
(b) List properties of M-circles. **04**
(c) Explain rules for construction of root locus. **07**

OR

Q.4 (a) Discuss Nyquist stability criterion. **03**
(b) Write a short note on state space representation of a control system. **04**
(c) The open-loop transfer function of a system is given by **07**
$$G(s) H(s) = \frac{K(s+12)}{s^2(s+20)}$$
.
Sketch the root loci for the system when K is varied from 0 to ∞ .

Q.5 (a) Define: (i) State (ii) State Variable (iii) State Vector. **03**
(b) Define the following terms **04**
1) Gain cross over frequency
2) Phase cross over frequency
3) Gain Margin
4) Phase Margin
(c) Sketch the Nyquist plot for the open-loop transfer function **07**
$$G(s) H(s) = \frac{10}{(s+2)(s+4)}$$
.
Determine the stability of the closed-loop system by Nyquist criterion.

OR

Q.5 (a) Explain standard test signals. **03**
(b) List Advantages of State variable analysis. **04**
(c) Derive the state variable equation $X=AX+BU$ and $Y=CX+DU$. Also draw the block diagram. **07**

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER- III(NEW) EXAMINATION – WINTER 2022****Subject Code:3131101****Date:22-02-2023****Subject Name:Control Systems****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS
Q.1	(a) Compare closed loop and open loop system.	03
	(b) Discuss Force-Current (F-I) analogous system with analogous quantity.	04
	(c) Define steady state error and derive the expressions for static error coefficients corresponding to step, ramp and parabolic inputs respectively.	07
Q.2	(a) List properties of the transfer function.	03
	(b) Discuss unit step response of first order system.	04
	(c) Draw the Nyquist plot for $G(s) = 1/s(s + 1)$ and comment on system stability.	07
	OR	
	(c) For the signal flow graph shown in Fig. 1, using Mason's gain formula determine the overall transmission C/R.	07
Q.3	(a) What is polar plot?	03
	(b) Using Routh's criterion check the stability of a system whose characteristic equation is given by $s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10 = 0$	04
	(c) Obtain the state transition matrix for the state model whose system matrix is given by $A=[1 \ 1; 0 \ 1]$.	07
	OR	
Q.3	(a) Describe in brief about PD controller.	03
	(b) List advantages of state variable analysis.	04
	(c) Draw the bode plot for a unity feedback system having,	07
	$G(s) = \frac{100}{s(1+0.5s)(1+0.1s)}$	
Q.4	(a) Discuss following transient response specification: Delay Time, Peak overshoot, Settling Time	03
	(b) Describe critical rules of block diagram reduction techniques.	04
	(c) What is Root locus? Sketch the Root locus plot for the unity feedback system having open loop transfer function,	07
	$G(s) = \frac{K}{s(s+3)(s^2+3s+4.5)}$	
	OR	
Q.4	(a) Define: Gain margin, phase margin, absolute stability	03
	(b) Describe any four block diagram reduction techniques.	04
	(c) Discuss steps to design a Lag Compensator using Bode plot method.	07
Q.5	(a) Write a note on PID controller.	03
	(b) Derive the expression for peak time T_p for a second order control system subjected to a unit step input.	04
	(c) Write a short note on state space representation of a control system.	07

OR

Q.5 (a) Discuss the effect of feedback on sensitivity. **03**
(b) Explain the Lead Compensator with its transfer function. **04**
(c) Derive the state variable equation $\dot{X} = AX + BU$ and $Y = CX + DU$. Also draw the state diagram **07**

Fig. 1
