

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER-III (NEW) EXAMINATION – SUMMER 2024****Subject Code:3131101****Date:19-07-2024****Subject Name: Control Systems****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) Define: (1) System (2) Output (3) Input	03
	(b) Compare open loop and closed loop system.	04
	(c) What is transfer function? Define Pole, Zero, Gain and Characteristic equation with examples.	07
Q.2	(a) List properties of Laplace Transform.	03
	(b) Find Laplace transform of $\sin(wt)$	04
	(c) Determine the Transfer function $V_o(s) / V_i(s)$ of the electrical system shown in given Figure.	07

OR

Q.3	(c) Discuss rules for block diagram reduction with example	07
	(a) Define: (1) State (2) State variable (3) State vector	03
	(b) Discuss various standard inputs used in the control system analysis.	04
	(c) Explain the mathematical modelling of fundamentals components of mechanical rotational system.	07

OR

Q.3	(a) Define Type and order of the system	03
	(b) Derive the expression for static error coefficients.	04
	(c) What is force voltage analogous system? Which are analogous quantities according to this method?	07

Q.4	(a) Define: (1) Undamped system (2) Damped frequency of oscillation (3) Natural frequency of oscillation	03
	(b) Analyze necessary conditions for Hurwitz's criterion.	04
	(c) Sketch the root locus of the system whose open loop transfer function is $G(s) = K / s(s+2)(s+4)$. Find the value of K so that the damping ratio of the closed loop system is 0.5.	07

OR

Q.4	(a) Define: (1) Peak overshoot (2) Settling time (2) Delay time	03
	(b) Analyze Routh's stability criterion.	04
	(c) Discuss general steps to solve the problem on root locus.	07

Q.5 (a) Define: (1) Conditional stable system (2) Unstable system (3) Marginally stable system **03**
(b) Discuss steps to sketch the bode plot. **04**
(c) Explain the following controllers (1) P controller (2) PI controller (3) PID controller **07**

OR

Q.5 (a) Define: (1) Gain margin (2) Phase margin (3) cut-off frequency **03**
(b) Consider a system with open loop transfer function as $G(s)H(s) = 10 / s$, obtain its polar plot. **04**
(c) A unity feedback control system has $G(s) = 80 / s (s+2) (s+20)$. Draw the bode plot. **07**

Enrollment No./Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering - SEMESTER - III EXAMINATION - SUMMER 2025

Subject Code: 3131101

Date: 29-05-2025

Subject Name: Control Systems

Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions

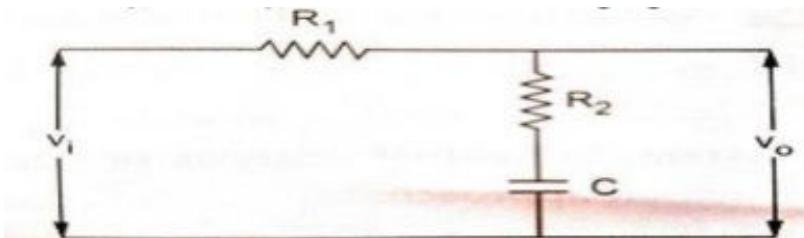
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

	Marks
Q.1 (a) Define i) Settling time ii) Peak time iii) Peak Overshoot	03
(b) Explain Force Voltage analogy.	04
(c) Derive the expression of a second order control system subjected to unit step signal.	07
Q.2 (a) State advantages and limitations of Routh stability criterion.	03
(b) Explain the steps of Bode plot.	04
(c) State root locus technique rules.	07

OR

(c) Sketch the complete root locus of system having unity feedback and

$$G(s) = \frac{K}{s(s+2)(s+4)}$$


Q.3 (a) Explain standard test signals.	03
(b) Find laplace transform of $x(t) = \cosh(4t)$	04
(c) Explain the following controllers (1) PID controller (2) P controller (3) PI controller	07

OR

(a) Define i) State vector ii) Delay time iii) Rise time

(b) Write properties of transfer function.

(c) Find the transfer function of the following fig.

Q.4 (a) Define i) Marginally stable state ii) Conditional stable state iii) Unstable state.	03
(b) Explain Nyquist Stability Criteria.	04

(c) Obtain the expression of steady state error. Also, find the equations for static error coefficients. **07**

OR

(a) Write advantages of state space approach over classical methods. **03**

(b) Explain polar plot with suitable example. **04**

(c) Write all the rules of Block Diagram Reduction technique. **07**

Q.5 (a) Define i) Gain Margin ii) Frequency response iii) Phase Margin **03**

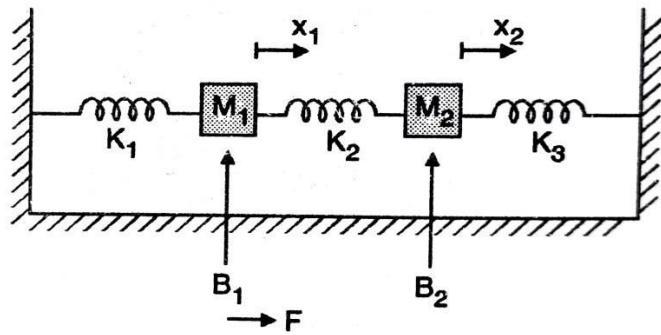
(b) Explain Mason's Gain Formula. **04**

(c) State and explain compensator. Explain Phase-Lag compensator in detail. **07**

OR

(a) Compare open loop and closed loop control systems. **03**

(b) Explain gain crossover frequency and phase crossover frequency. **04**


(c) Explain Phase-Lead compensator in detail. **07**

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER-III(NEW) EXAMINATION – SUMMER 2023****Subject Code:3131101****Date:26-07-2023****Subject Name:Control Systems****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS
Q.1	(a) Explain Close Loop System with Block diagram & Example. (b) Discuss Force-Current (F-I) analogous system with analogous quantity. (c) Define: Transfer function, Loop Gain, Steady-state error, Path Gain	03 04 07
Q.2	(a) Discuss following terms with respect to Frequency response analysis. (i) Resonant Peak (ii) Resonant Frequency (iii) Bandwidth (b) Explain standard test signals. (c) Discuss Unit-step time response of Second-order systems for $\xi > 0$.	03 04 07
	OR	
Q.3	(a) Consider a system represented by the following equations. Draw the Signal Flow Diagram of the system. $X_1 = 6X_0 + 3X_2, X_2 = 12X_1 + 5X_2 + 2X_3$ $X_3 = 2X_2 + 3X_4, X_4 = 11X_3$	07
Q.3	(a) List properties of M-circles. (b) Explain the Stable, Marginally stable and Unstable systems with diagram. (c) Explain rules for block-diagram reduction technique.	03 04 07
	OR	
Q.3	(a) What is polar plot? Explain in brief. (b) Derive the expressions for error constants K_p, K_v & K_a corresponding to step, ramp and parabolic input respectively. (c) System-1 has transfer function $G_1(s) = \frac{30}{4s^2 + 3s + 6}$ and System-2 has transfer function $G_2(s) = \frac{2}{s+4}$. Find Cascade and parallel transfer function for system 1 and system 2.	03 04 07
Q.4	(a) Explain: Root locus And Centroid (b) Explain the frequency response, state its application with possible limitations. (c) Discuss Lag compensator. Obtain the transfer function of a Lag Compensator.	03 04 07
	OR	
Q.4	(a) Describe Correlation between transfer function and state space equations. (b) Discuss Nyquist stability criterion. (c) Draw the equivalent mechanical system of the system shown in the figure Write the set of equilibrium equation for it and obtain electrical analogous circuit using F-V Analogy.	03 04 07

Q.5 (a) Explain concept of Relative stability. 03
 (b) Write a short note on state space representation of a control system. 04
 (c) Obtain the Root-locus plot for the unity feedback system with transfer function. 07

$$G(s) = \frac{k}{s(s+2)}$$

OR

Q.5 (a) Define: State & State Vector 03
 (b) Write short note on PID controller. 04
 (c) By Hurwitz, find stability of $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$ 07

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER- III (NEW) EXAMINATION – SUMMER 2022****Subject Code:3131101****Date:13-07-2022****Subject Name:Control Systems****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	MARKS
Q.1	03
(a) What is feedback? Explain the effect of feedback.	03
(b) Define: Transfer function, Self loop, Steady-state error	04
(c) What is control system? What are the different types of control systems? Compare open-loop and closed-loop control system.	07
Q.2	03
(a) List properties of the Transfer Function.	03
(b) Compare Block diagram and Signal flow graph methods.	04
(c) What is an analogous system? Establish force-current and force-voltage analogy.	07
OR	
(c) Obtain Transfer function of the mechanical system shown in figure 1.	07

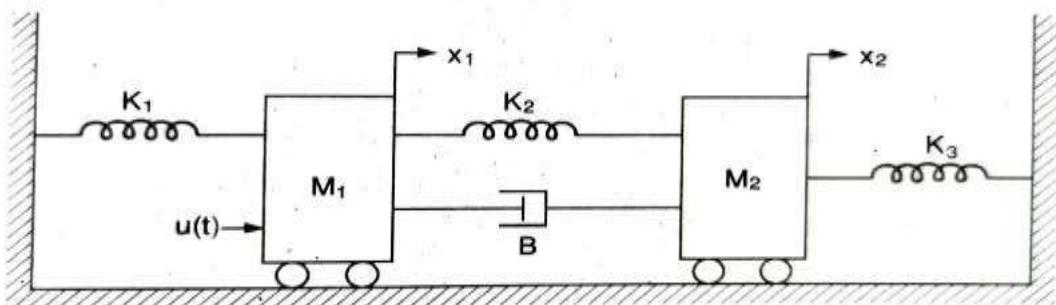


Figure 1.

Q.3	03
(a) Explain: Frequency response, Root locus, Centroid.	03
(b) Discuss standard Test signals used in control system.	04
(c) Derive the closed loop transfer function using block diagram reduction technique for the figure 2.	07

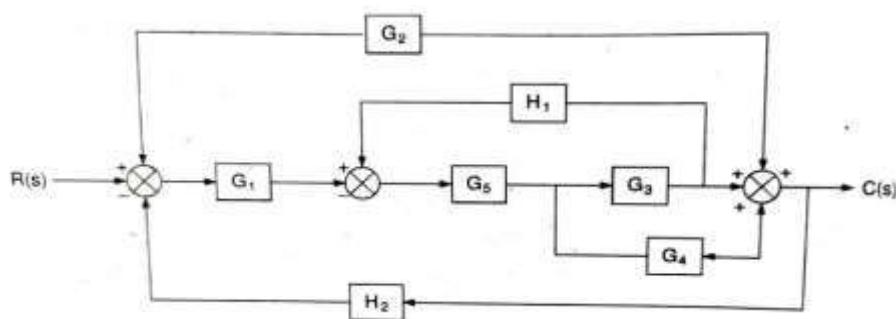


Figure 2.

Q.3	03
(a) Discuss Hurwitz's stability criteria.	03
(b) Define: (1) Delay time (2) Rise time (3) Peak time (4) Settling time	04

(c) Obtain the transfer function C/R of the block diagram shown in figure 3. Using Mason's gain formula. 07

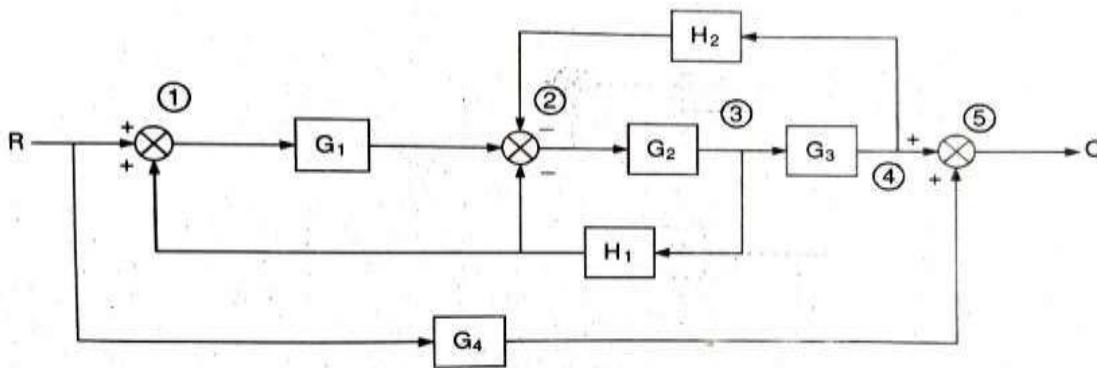


Figure 3.

Q.4 (a) Explain: Gain margin, Phase margin, Polar plot. 03
 (b) Apply Routh-Hurwitz criterian to determine stability of a control system whose open-loop transfer function is given below. 04

$$G(s)H(s) = \frac{5}{s(s^2 + 2Ks + K + 4)}$$

(c) For the given type-2 system, find root locus and comment on stability. 07

$$G(s) = \frac{K}{(s^2)(s + 2)}$$

OR

Q.4 (a) Explain: State, State variable, state trajectory. 03
 (b) Write short note on PID controller. 04
 (c) For the given type-2 system, Draw the polar plot. 07

$$G(s) = \frac{40}{(s^2)(s + 4)}$$

Q.5 (a) Derive an expression for the rise time for a 2nd order control system subjected to a unit step input. 03
 (b) Derive the expression for peak time T_p for a second order control system subjected to a unit step input. 04
 (c) State and explain nyquist stability criteria. 07

OR

Q.5 (a) Derive Correlation Between Transfer Functions and State-Space Equations. 03
 (b) List Advantages of State variable analysis. 04
 (c) For the given open-loop unstable system with transfer function 07

$$G(s)H(s) = \frac{s + 2}{(s^2 - 1)}$$

Draw Nyquist contour and plot.
