

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-III EXAMINATION – WINTER 2025****Subject Code:3130506****Date:12-12-2025****Subject Name: Applied Chemistry****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	Marks
Q.1 (a) Write a short note on Magnetic Properties of the substances.	03
(b) Outline the followings: Specific rotation, Optical activity, Diasteromer and Enantiomer.	04
(c) Show that Depression in freezing point is colligative property. 45 g of ethylene glycol ($C_2H_6O_2$) is mixed with 600 g of water (Given: K_f of water = $1.86\text{ K kg mol}^{-1}$). Calculate (i) the freezing point depression and (ii) the freezing point of the solution	07
Q.2 (a) Explain the fission of a covalent bond.	03
(b) Summarize the importance of Resonance effect with suitable examples.	04
(c) What are reactive intermediates? Outline the structure, properties, stability and significance of Carbocations, Carboanion and Carbenes.	07
OR	
(c) Discuss the organic reactions mechanisms of Acylation, Nitration, Sulphonation and Alkylation of toluene.	07
Q.3 (a) Define wave function and write its significance.	03
(b) Explain the conformational isomerism in n-butane.	04
(c) Explain the hybridization, describe the bonding in molecules using hybridization concept (make use of suitable examples).	07
OR	
Q.3 (a) Interpret Heisenberg Uncertainty Principle	03
(b) Discuss the two methods of resolution of racemic mixtures.	04
(c) Outline the phase diagram of the Ferric chloride-water system and explain its salient features.	07
Q.4 (a) Define: Glass Transition Temperature, Liquid Crystal and viscoelasticity.	03
(b) The heat of combustion of methane is $-890.65\text{ kJ mol}^{-1}$ and heat of formation of CO_2 and H_2O are $-395.5\text{ kJ mol}^{-1}$ and 286.0 kJ mol^{-1} respectively. Calculate the heat of formation of methane. ($R=8.314\text{ J/K mol}$).	04
(c) What is the half-life period of a reaction? Derive the equation for first order reaction.	07

OR

Q.4 (a) Explain the followings by taking suitable examples. **03**
i) Heat of transition *and* ii) Heat of neutralization.

(b) A first order reaction is 10% completed in 20 minutes. How long will it **04**
take to be 70% complete?

(c) Explain mathematical expression for the rate constant of the second **07**
order reaction.

Q.5 (a) Write a short note on the Nano Composites. **03**
(b) Write down the properties and uses of insulators. **04**
(c) Explain the principle, instrumentation and applications of SEM. **07**

OR

Q.5 (a) Write down the properties and uses of Silicates. **03**
(b) Explain the principles of Florescence spectroscopy **04**
(c) Explain the principle, instrumentation and applications of PSA. **07**

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2024****Subject Code: 3130506****Date: 26-11-2024****Subject Name: Applied Chemistry****Time: 10:30 AM TO 01:00 PM****Total Marks: 70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	MARKS
Q.1	03
(a) Write applications of applied chemistry in the service of society.	03
(b) Explain optical activity by taking tartaric acid as example.	04
(c) Write notes on: Viscosity, Depression in freezing point, Molarity, Osmosis, Hybridization, Enthalpy, Electronegativity.	07
 Q.2	
(a) Describe following terms: Phase, component, degree of freedom	03
(b) Explain following terms: Order of stability for free radicals, Intermediate of chlorination of benzene, Markovnikov's rule, Inductive effect	04
(c) Recognize the type of reaction and support the explanation with mechanism for Synthesis of Methyl alcohol from methyl chloride.	07
OR	
(c) Write difference between SN1 and SN2 reactions with detailed mechanism.	07
 Q.3	
(a) Explain: Zeolites, Nanocomposites, Glass transition temperature	03
(b) Write detailed discussion on Molecular orbital theory with example.	04
(c) What is phase rule? Explain phase diagram of one component system taking example of water.	07
OR	
Q.3	
(a) What is Heisenberg uncertainty principle?	03
(b) A first order reaction is 20 % completed in 10 minutes. Calculate the time taken for the reaction to go to 80 % completion.	04
(c) Explain two component silver-lead system with appropriate diagram and details.	07
 Q.4	
(a) Compare and contrast between Enantiomers and diastereomers.	03
(b) Explain sp ³ hybridization with structure bonding and shape of CH ₄ , NH ₃ , H ₂ O.	04
(c) What is first order of reactions? Derive rate law for the first order of reaction, also writes the unit of rate constant.	07
OR	
Q.4	
(a) Give details of Schrodinger Wave Equation.	03
(b) Define: Molecularity of reaction, rate law, E-Z isomers, R-S Configuration	04

(c) Vishnu synthesized nitrobenzene from benzene in applied chemistry lab. Help him in solving following details:


- (i) Chemical Reaction
- (ii) Recognizing type of mechanism (name only)
- (iii) Intermediate formed
- (iv) Spectroscopic characterization

07

Q.5 (a) Elaborate engineering applications of ceramics, refractories and insulators. **03**
(b) Explain following terms: (i) Florescence, (ii) Heat of combustion (iii) Exothermic reactions (iv) Shielding effect **04**
(c) The equation for the calculation is as following: **07**

Calculate the enthalpy change, in kJ mol^{-1} , by using the data given below and also write the statement of law governing this.

OR

Q.5 (a) What is surface characterization? Suggest few methods for the same. **03**
(b) What is Hess's law? Explain its applications. **04**
(c) Write principle of Mass spectroscopy also give details of instrument and its specific applications. **07**

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2023****Subject Code:3130506****Date:16-01-2024****Subject Name:Applied Chemistry****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) Show the measurement of Boiling point Elevation. (b) Define: Reaction rate, Molecularity of a reaction, Enantiomers & Specific rotation. (c) Explain with principle, instrumentation of mass spectroscopy.	03 04 07
Q.2	(a) Explain the E and Z designation of Geometrical isomers. (b) Define Term: Molality, Dipole Moment, Carbenes, Heterolytic fission. (c) Give the types of Organic reaction and discuss Electrophilic Substitution reaction.	03 04 07
	OR	
	(c) Describe the optical activity of Lactic acid and Tartaric acid.	07
Q.3	(a) Derive Schrodinger Wave Equation. (b) Discuss SP^2 Hybridization with suitable example. (c) Explain the Molecular Orbital Theory.	03 04 07
	OR	
Q.3	(a) Give the application of XRD. (b) Determine ΔH of the reaction:	03 04
	$C(s) + 2H_2(g) \rightarrow CH_4(g)$	
	from the following data:	
	(i) $C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H = - 393.7 \text{ kJ}$
	(ii) $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(l)$	$\Delta H = - 285.7 \text{ kJ}$
	(iii) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$	$\Delta H = - 890.3 \text{ kJ}$
	(c) Draw the phase diagram of Ferric chloride-Water system. Describe its importance.	07
Q.4	(a) Elaborate zero order reaction with suitable example. (b) Define: Phase, Eutectic point, heat of neutralization, Exothermic reaction. (c) Draw the phase diagram of one component system and discuss its salient features.	03 04 07
	OR	
Q.4	(a) Discuss Pseudo order reaction. (b) A solution of H_2O_2 when titrated against $KMnO_4$ solution at different time intervals gave the following results:	03 04

T(minutes)	0	10	20
Vol. of $KMnO_4$ used for 10 ml H_2O_2	23.8 ml	14.7 ml	9.1 ml

Selecting the above data, show that the decomposition of H_2O_2 is a first order reaction.

(c) Explain mathematical expression for the rate constant of the second order reaction. **07**

Q.5 (a) Write a note on zeolite. **03**
(b) Discuss the classification of ceramics with their general properties. **04**
(c) Describe each section of Transmission Electron Microscope. **07**

OR

Q.5 (a) What are liquid crystals and types? Give its uses. **03**
(b) Write a note on Insulators with their uses. **04**
(c) Explain the principle, instrumentation of Nuclear magnetic resonance spectroscopy. **07**

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER- III(NEW) EXAMINATION – WINTER 2022****Subject Code:3130506****Date:22-02-2023****Subject Name:Applied Chemistry****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	MARKS
Q.1 (a) Define molarity and molality. 03	
(b) Explain the importance of nan-composites. 04	
(c) Differentiate between S_N1 and S_N2 reactions. Give one example of each. 07	
Q.2 (a) Identify <i>ortho</i> -, <i>para</i> -directing groups; 03 -CN, -NH ₂ , -OH, -NO ₂ , -COOH, -CH ₃ .	
(b) Explain Beer-Lambert law. 04	
(c) Draw the phase diagram of Zinc-Cadmium system. Describe its importance. 07	
OR	
(c) Derive the expression for a first order reaction. 07	
Q.3 (a) Differentiate between nematic phase and smectic phase. 03	
(b) Suggest a method for resolution of racemic mixture. 04	
(c) Explain the optical isomerism in lactic and tartaric acid. 07	
OR	
Q.3 (a) Differentiate between refractories and insulators. 03	
(b) Suggest a suitable bonding theory to explain paramagnetic behavior of O ₂ . 04	
(c) Explain the shape of NH ₃ and SF ₄ on the basis of hybridization and VSEPR theory. 07	
Q.4 (a) State basic principle of mass spectroscopy. 03	
(b) State Hess's Law of constant heat summation, its importance in thermo-chemistry. 04	
(c) SEM is powerful tool to study the surface of a material. Explain its principle, instrumentation and applications. 07	
OR	
Q.4 (a) Calculate the mole fraction of methanol, if its 16 g is dissolved in 36 g water. 03	
(b) Enthalpy of combustion of carbon to carbon dioxide is -393.5 J/mol. Calculate the heat released upon formation of 22 g of CO ₂ from carbon and oxygen gas. 04	
(c) Derive Bragg's equation; $n\lambda = 2d \sin \theta$. 07	
Q.5 (a) Denote E and Z isomers in but-2ene. 03	
(b) Explain generation, stability and fate of a carbocation. 04	
(c) Give reason: (a) High order reactions are uncommon. (b) Zeolites act as shape selective catalysts. 07	
OR	
Q.5 (a) What is glass transition temperature? 03	
(b) Explain generation of a benzyne in elimination-addition mechanism of S _N Ar reactions. 04	
(c) Derive Schrödinger wave equation and explain the importance of ψ . 07	
