Seat No.:	Enrolment No.
Deat 110	Linoinent 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2023

Subject Code:3131905	Date:18-01-2024
Subject Name Engineering Thermodynamics	

Subject Name: Engineering Thermodynamics

Fime:10:30 AM TO 01:00 PM	Total Marks:70

Instructions:

1.	Attempt all	l questions.
----	-------------	--------------

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- 5. Use of Steam table and Mollier Chart (h-s diagram) is permitted.

Q.1	(a)	Define state, property, cycle.	MARK
Ų.1	(b)	Explain Zeroth law of thermodynamics stating it's application.	03
	(c)	Explain First law of thermodynamics for the closed system i) undergoing a cycle and ii) change of state/process.	07
Q.2	(a)	Carnot cycle is practically impossible. Justify the statement	03
	(b)	Compare steady flow processes with unsteady flow processes.	04
	(c)	Write down Kelvin-Planck's and Clausius' statements for Second Law of thermodynamics. Prove equivalence between them.	07
	(a)	OR At the inlet to an insulated nozzle, steam enters at 687 kPa and 205°C with 3000	07
	(c)	m/min velocity and leaves at a pressure of 137 kPa and 30000 m/min velocity. Determine enthalpy of leaving steam. Mention the assumptions made.	U7
		Determine entitalpy of leaving steam. Wention the assumptions made.	
Q.3	(a)	Explain the terms 'EXERGY' and 'ANERGY'.	03
	(b)	Prove that entropy is the property of system.	04
	(c)	Derive an expression for exergy of a closed system. OR	07
Q.3	(a)	Explain the Third Law of Thermodynamics.	03
	(b)	State the types of irreversibility. Discuss their effects.	04
	(c)	A heat engine receives 1000 kW of heat from an infinite heat source at 559 K and rejects heat at 279 K to an infinite heat sink. Comment whether the cycle is possible or irreversible for following heat rejection amounts: i) 400 kW ii) 490 kW iii) 850 kW	07
Q.4	(a)	State the functions of the following components of V.C.R. system: (1)	03
	(b)	Condenser (2) Expansion Valve (3) Evaporator Compare Carnot and Rankine cycle.	04
	(c)	In an ideal Rankine cycle, steam at 20 bar and 350° C expands in steam turbine	07
	(0)	to 0.05 bar. The saturated water after condensation fed back to the boiler. Determine i) net work done per kg of steam ii) Rankine cycle efficiency.	0.
		Determine i) het work done per kg of steam ii) kankine cycle efficiency.	
		OR	
Q.4	(a)	Discuss with T-s diagram, the effect of superheat and condenser	03
		pressure variation on performance of Rankine cycle.	
	(b)	Discuss any two factors affecting the performance of VCR cycle.	04
	(c)	In an engine operated on Otto cycle, the compression ratio is 6 and the compression starts at 30° C and 100 kPa. The maximum temperature of the cycle	07

		is 1250°C. Determine; i) heat supplied pe kg of air ii) air standard efficiency of the cycle iii) Mean effective pressure of the cycle. Take $Cv = 0.716$ and $\gamma = 1.4$	
Q.5	(a)	Explain effect of regeneration on the performance of Rankine cycle using appropriate diagram.	03
	(b)	Draw block diagram of Vapour Compression Refrigeration system. Write down all four processes and show these processes on p-h diagram.	04
	(c)	Explain Junker's gas calorimeter with neat sketch.	07
		OR	
Q.5	(a)	Explain effect of sub cooling in VCR cycle using p-h diagram.	03
	(b)	Derive an expression for thermal efficiency of an Otto cycle.	04
	(c)	Determine the mass of air required for the complete combustion of 1 kg of an	07
		Iso-Octane (C ₈ H ₁₈) used as a fuel for an engine. Assume air contains 23% O ₂ by	
		mass.	
