GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III EXAMINATION - SUMMER 2025

Subject Code:3131905 Date:31-05-2025

Subject Name: Engineering Thermodynamics

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- 5. Steam table, Gas table and Mollier chart is permitted.

			Marks
Q.1	(a)	Define the terms: (1) Thermodynamics System (2) Property (3) Cycle	03
	(b) (c)	Explain thermodynamic equilibriumbriefly. Derive S.F.E.E. clearly stating assumptions. Reduce it for turbine.	04 07
Q.2	(a)	Show that the COP of a heat pump is always greater than the COP	03
	(b)	of refrigerator. Explain PMM of kind I and II.	04
	(c)	Steam enters a nozzle at 7 bar pressure and 20° C (initial enthalpy = 2850 kJ/kg) and leaves at a pressure of 1.5 bar. The initial and final velocities of steam is 40 m/s nad 700 m/s respectively throught the nozzle. The mass flow rate is 1400 kg/hr and heat loss from the nozzle is 11705 kJ/hr. Specific volume at exit is 1.24 m ³ /kg.Determine final enthalpy and exit area.	07
	(c)	An inventor claims that his engine developes 75 kW of power while operating between 1023K and 298K temperature. The amount of fuel(C.V. of fuel = 74500 kJ/kg) burnt per hour is 3.9 kg. Comment about the validity of his claim and justify your comment.	07
Q.3	(a)	State and prove Clausius theorem.	03
C 12	(b)	Show that efficiency of a reversible heat engine operating between two constant temperatures is maximum.	04
	(c)	A block of 100 kg of iron at temperature 100°C is immersed in 50 kg of water at a temperature of 20°C. Determine the entropy change for combined system of iron and water. Take Cp of iron and water as 0.42 kJ/kgK and 4.18 kJ/kgK respectively. OR	07
Q.3	(a)	Define: (i) Availability (ii) Irreversibility and (iii) Dead state.	03
	(b)	Explain Guoy-Stodola theorem.	04
	(c)	Explain principle of increase of entropy. Apply it for the heat transfer through a finite temperature difference.	07
Q.4	(a)	Enlist desirable properties of good refrigerant.	03
	(b)	For the same compression ratio and heat rejection, compare Otto, Diesel and Dual cycle. Explain with p-v and T-s diagram.	04

	(c)	Draw Rankine cycle on P-v, T-s and h-s diagrams and derive an expression for its thermal efficiency with and without pump work. OR	07
Q.4	(a)	State the assumptions made for the analysis of air standard cycle.	03
	(b)	Explain simple regenerative Rankine cycle.	04
	(c)	A diesel engine has compression ratio of 20. The compression begins at 0.1 MPa and 35°C. The heat added is 1700 kJ/kg. Calculate maximum pressure and temperature of cycle, work done	07
		per kg of air and cycle efficiency.	
Q.5	(a)	Define the following terms related to combustion process: (i) HCV (ii) LCV (iii)Enthalpy of formation	03
	(b)	Explain Bomb calorimeter with neat sketch.	04
	(c)	Discuss factors affecting performance of VCR cycle.	07
		OR	
Q.5	(a)	Explain Stoichiometric air fuel ratio in detail.	03
	(b)	Calculate the amount of theoretical air required for the combustion of 1 kg of acetylene (C ₂ H ₂) to CO ₂ and H ₂ O.	04
	(c)	In a steam power cycle, the dry saturated steam supplied at 15 bar. The condenser pressure is 0.4 bar. Calculate the Carnot and Rankine efficiencies of the cycle. Neglect pump work.	07
