Subject Code:3130608

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III EXAMINATION – SUMMER 2025

Date:04-06-2025

Subject Name:Mechanics of Solids Time:02:30 PM TO 05:00 PM Instructions: Total Mark		s:70	
	2. 3.	Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	MARK
Q.1	(a)	Define : (i) Space (ii) Resultant (iii) Couple	03
	(b)	Determine resultant of coplanar concurrent force system shown in fig.1	04
	(c)	Find support reactions for the beam shown in fig.2	07
Q.2	(a)	Enlist Fundamental principles of mechanics. State principle of transmissibility.	03
	(b)	A cord supported at A and B carries a load of 10 kN at D and a load of W at C as shown in Fig.3. Find the value of W so that CD remains horizontal.	04
	(c)	Analyse the truss shown in fig. 4	07
		OR	
	(c)	For the system of force on a lamina OABC shown in figure 5, find magnitude and direction of the resultant force. Also locate the resultant by perpendicular distance from point "O".	07
Q.3	(a)	Determine resultant of coplanar concurrent force system shown in fig.1 using graphical method.	03
	(b)	Derive relation between uniformly distributed load, shear force and bending moment with usual notations.	04
	(c)	Draw shear force and bending moment diagrams for the beam shown in fig. 6 OR	07
Q.3	(a)	Define (i) Shear force (ii) Point of zero shear (iii) Point of contraflexure	03
	(b)	State assumption made in theory of pure bending.	04
	(c)	Find centroid of lamina shown in fig. 7	07
Q.4	(a)	State and explain Pappus Guldinus first theorem using appropriate example.	03
	(b)	A rectangular beam 300 mm deep is simply supported over a span of 4.0 m. What uniformly distributed load the beam may carry if the bending stress is not to exceed 120 MPa? Take $I = 8 \times 10^6 \text{ mm}^4$	04
	(c)	Calculate stresses in each portion and the total change in length for steel bar ABCD as shown in figure 8. Take $E=200\ GPa$	07
_		OR	
Q.4	(a)	Define : (i) Shear Stress (ii) Modulus of Rigidity (iii) Volumetric strain	03
	(b)	Determine moment of inertia about its horizontal centroidal axis for T section having flange and web dimensions 100mm x20 mm each.	04
	(c)	A short concrete column 300mm x 300mm in section is carrying axial load of 360 kN. The column is reinforced by four 12mm diameter steel bars each one	07

at corner. Calculate stresses in concrete and steel.

- Q.5 (a) Sketch qualitative shear stress distribution diagrams for following sections
 (i) Circular (ii) I section and (iii) T section
 (b) A steel tube of 2 m length is subjected to 50° C rise in temperature. Determine
 04
 - (b) A steel tube of 2 m length is subjected to 50° C rise in temperature. Determine (i) free natural expansion and (ii) stress developed in the tube, if expansion is prevented. Take Es = $2.0 \times 10^5 \text{ N/mm}^2$ and $\alpha = 12 \times 10^{-6} \text{ per }^{\circ} \text{ C}$.
 - (c) Define: (i) Poisson's ratio (ii) Bulk modulus (iii) Modulus of Elasticity.

 Derive relation between bulk modulus, Poisson's ratio and modulus of elasticity.

OR

- Q.5 (a) Define (i) Torsional Rigidity (ii) Principal Plane (iii) Neutral axis
 - (b) A solid steel shaft of 60 mm diameter is subjected to torque of 5 kNm. **04**Determine maximum shear stress developed in the shaft. G= 80GPa
 - (c) For an element shown in fig.9.

 Determine (i) Principal stresses and location of corresponding principal planes.

 (ii) Maximum shear stress and location of planes containing it

5.N

60°

2 N/m

07
