GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III (NEW) EXAMINATION - WINTER 2024

Subject Code: 3130107 Date: 21-11-2024

Subject Name: Partial Differential Equations and Numerical Methods

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

								MARK	S
Q.1	(a)	State the definition for Ef(x) and prove $\Delta = E - 1$.							
	(b)	State and describe the formula for Trapezoidal rule							
	(c)	Implement the method of least square to fit a straight line $y = ae^{bx}$ the following data							
		Χ	1	2	3	4			
		У	7	11	17	27			

Q.2 (a) Solve
$$(y+z)p - (x+z)q = x - y$$
 03
(b) Evaluate using method of successive approximation for the function $sin x = \frac{x}{2}$

(c) Find a root for the function \sqrt{N} using Newton Raphson also compute for N=27

OR

- (c) Use bisection method to solve $x^3 x 11 = 07$ 0 upto fourth iteration.
- - (c) Evaluate using Trapezoidal and Simpson $1/3^{\text{rd}}$ rule $\int_0^1 \frac{1}{1+x} dx$ h=0.25

OR

Q.3 (a) Brief the Inverse Lagrange's interpolation formula 03
(b) Apply Trapezoidal rule to evaluate ∫₀¹ e^{-x²} dx with n = 10 04
(c) Use appropriate Newtons interpolation formula to compute y(1.6) from the table 07

X	1	1.4	1.8	2.2
у	3.49	4.82	5.96	6.5

Q.4	(a)	State Taylor's approximation formula for IVP	03	
•	(b)		04	
	(c)	Use the Taylors method to solve	07	
		$\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$ compute y for x=0.2		
		OR		
Q.4	(a)	State the algorithm of successive approximation	03	
	(b)	Solve $z^2(p^2z^2 + p^2a^2) = 1$		
	(c)		07	
		determine y(0.1)	03	
Q.5		Solve 4z=pq		
	(b)	Solve $(D^2 + 10DD' + 25D'^2)z = e^{3x+2y}$	04	
	(c)	Solve heat equation using variable separable method		
		OR		
Q.5	(a)	State the wave equation with initial and boundary conditions	03	
	(b)	Solve $p^2 + x^2y^2q^2 = x^2z^2$	04	
	(c)		07	
		position given by $u(x, 0) = u_0 \sin^3(\frac{\pi x}{L})$. If it is released at rest from		
		this position, find the displacement u(x.t). **********************************		