GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2024

Subject Code:3130107 Date:16-07-2024

Subject Name:Partial Differential Equations and Numerical Methods

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

7

7

03

- Q.1 (a) Set up a Newton Raphson method for computing the square root x of a given positive number c and apply it to c = 2.
 - (b) Solve the given System of Linear equations by using Gauss Elimination 04 method:

$$8y + 2z = -7$$
; $3x + 5y + 2z = 8$; $6x + 2y + 8z = 26$

- (c) State the difference between Regula false position method and Secant method. Use secant method to find the positive root of the equation $f(x) = x 2 \sin x = 0$ starting from $x_0 = 2$, $x_1 = 1.9$ correct upto 6 decimal places.
- Using method of least squares fit a straight line to the following data: 03 0.2 (a) 0 10 15 20 25 5 X 12 15 17 22 24 30
 - (b) Using the method of least squares fit the non-linear curve of the form $y = ae^{bx}$ to the following data.

 x
 1
 5
 7
 9
 12

 y
 10
 15
 12
 15
 21
 - (c) Solve the following system of equation using Gauss-Seidel method: 2x y + 2z = 3, x + 3y + 3z = -1, x + 2y + 5z = 1.

OR

(c) Compute f(9.2) from the following table using the Newton's divided difference formula.

X	8	9	9.5	11
f(x)	2.079442	2.197225	2.251292	2.397895

- Q.3 (a) State Newton's forward difference Interpolation formula.
 - (b) Using Trapezoidal rule to evaluate $\int_0^1 e^{-x^2} dx$ considering n=10 **04** subintervals.
 - (c) Explain Euler's method briefly and using it evaluate y(1) for $\frac{dy}{dx} = x + y|y(0) = 0$ by taking h = 0.2.

OR

Q.3 (a) Using Simpson's- $\frac{1}{3}$ rule to evaluate $\int_0^1 e^{-x^2} dx$ considering n=10 03 subintervals.

- (b) Find the real root of the equation $x^3 3x + 1 = 0$ correct to three decimal places by iteration method using $x_0 = 1$.
- (c) Apply Runge –Kutta fourth order method to obtain y(1.2) by taking h = 0.5 for IVP $\frac{dy}{dx} = \frac{y-x}{y+x}|y(0) = 1$.
- Q.4 (a) Using Newton's forward interpolation formula compute cosh 0.56 from the following table

X	0.5	0.6	0.7	0.8
cosh x	1.127626	1.185465	1.255169	1.337435

- (b) State the Lagrange's linear partial differential equation of first order and hence solve $pz qy = z^2 + (x + y)^2$.
- (c) Solve the equation $\frac{\partial^2 z}{\partial x^2} 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ by the method of separation of variables.

OR

Q.4 (a) Solve
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \sin x \cos 2y.$$

- (b) Use Euler's method to find y(2) from the differential equation $\frac{dy}{dx} = x + 2y, y(1) = 1.$

x	9.0	9.5	11.0
у	2.1972	2.2513	2.3979

- Q.5 (a) Form a partial differential equation by eliminating the arbitrary constants from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
 - (b) Obtain the general solution of $p^2 + q^2 = 2$..
 - (c) Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u \text{ given that } u(x,0) = 6e^{-3x}.$

OR

- Q.5 (a) Form a partial differential equation by eliminating the arbitrary function form $f(x + y + z, x^2 + y^2 + z^2) = 0$.
 - (b) Solve by using Charpit's method $p^2 q^2 = x y$.
 - (c) Solve the following IVP 07

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$

$$u(x,0) = f(x) \text{ for } 0 < x < l.$$

$$\frac{\partial u}{\partial x}\Big|_{x=0} = 0 = \frac{\partial u}{\partial x}\Big|_{x=L} \text{ for } t > 0.$$
