GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(NEW) EXAMINATION - SUMMER 2023

Subject Code:3130107 Date:24-07-2023

Subject Name:Partial Differential Equations and Numerical Methods

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

04

7

7

03

04

- Q.1 (a) Find the real root of the equation $f(x) = x^3 x 1 = 0$ correct to two decimal places by iterative method.
 - (b) Solve the given system of Linear equations by using Gauss Elimination 04 method:

$$3x + y - z = 3$$
, $2x - 8y + z = -5$, $x - 2y + 9z = 8$

- (c) Explain the Newton-Raphson method with its graphical or interpretation. Also, compute the real roots of the equation $f(x) = xe^x \cos x = 0$ correct upto three decimal places using Newton-Raphson method.
- Q.2 (a) Using method of least squares fit a straight line to the following data: 03

X	2003	2004	2005	2006	2007
У	35	56	79	80	40

(b) Fit the curve $y = ax^b$ to the following data.

If the curve $y = ux$ to the following data.				
X	61	26	7	2.6
y	350	400	500	600

(c) Solve the following system of equation using Gauss-Seidel method:

$$2x + y + z = 4$$
, $x + 2y + z = 4$, $x + y + 2z = 4$.

OR

(c) Compute f(9.2) from the following table using the Newton's divided difference formula.

x	8	9	9.2	11
f(x)	2.079442	2.197225	2.251292	2.397895

- Q.3 (a) State the Newton's forward interpolation formula.
 - (b) Use Trapezoidal rule to evaluate $\int_4^8 \frac{dx}{x}$, using for equal sub-intervals. **04**
 - (c) Explain Euler's method briefly and using it evaluate y(1) for $\frac{dy}{dx} = x + y|y(0) = 1$ by taking h = 0.2 using improved Euler's method.

OR

- Q.3 (a) Evaluate $\int_0^1 e^{-x^2} dx$ using Simpson's $-\frac{1}{3}$ rule by taking h = 0.1 n = 10.
 - (b) Find the positive root of the equation $x 2 \sin x = 0$ by the secant method starting from $x_0 = 2$, $x_1 = 1.9$.
 - (c) Apply Runge –Kutta fourth order method to obtain y(1) by taking h = 0.2 for the following Initial value problem $\frac{dy}{dx} = x + y|y(0) = 1$.

Using Newton's forward interpolation formula compute cosh 0.56 03 from the following table

X	0.5	0.6	0.7	0.8
cosh x	1.127626	1.185465	1.255169	1.337435

- (b) State the Lagrange's linear partial differential equation of first order and 04 hence solve $\frac{y^2z}{x}p + xzq = y^2$.
- Solve the following equation by the method of separation of variables. **07** $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ given $(x, 0) = 6e^{-3x}$.

Q.4 (a) Solve

$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \sin x \cos 2y.$$

- $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x \partial y} = \sin x \cos 2y.$ Using Taylor's method $\frac{dy}{dx} = x^2 y|y(0) = 1$ at x = 0.1, 0.2. 04
- Using Lagrange's interpolation formula, find the value of x = 10, from the following table:

x	5	6	9	11
У	12	13	14	16

- Q.5 (a) Form a partial differential equation by eliminating the arbitrary 03 constants from $2z = \frac{x^2}{a^2} + \frac{y^2}{b}$.
 - **(b)** Obtain the general solution of $\sqrt{p} + \sqrt{q} = 1$. 04
 - Using the method of separation of variables, solve

$$\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$
OR

- Form a partial differential equation by eliminating the arbitrary 03 0.5 function form $f(x + y + z, x^2 + y^2 + z^2) = 0$.
 - Solve by using Charpit's method. $(p^2 + q^2)y = qz$. 04
 - Solve the following IVP

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

$$u(x,0) = f(x) \text{ for } 0 < x < l.$$

$$\frac{\partial u}{\partial t}(x,0) = 0 \text{ for } 0 < x < l.$$

03

07

07

07