GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2024

Subject Code: 3130109 Date: 29-11-2024

Subject Name: Thermodynamics for Aeronautical Engineering

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a) (b)	Explain state, property also describe intensive and extensive property. i) Explain Zeroth Law of thermodynamics in short (ii) Distinguish Macroscopic Vs Microscopic Approach.	07 07
Q.2	(a) (b)	Explain the Carnot theorem. Derive steady flow energy equation for turbine, pump and nozzle with neat sketch. OR	07 07
	(b)	Explain Kelvin-Plank and Clausius statement of second law of thermodynamics.	07
Q.3	(a)	Justify that the efficiency of diesel cycle is higher than the Otto cycle for the same compression ratio and heat rejection.	07
	(b)	Explain Carnot cycle with P-V and T-S diagram. OR	07
Q.3	(a)	An air standard otto cycle has a compression ratio of 8. At the beginning of the compression the temperature is 300 K and pressure is 1 bar. If the maximum cycle temperature is limited to 1080 K. Determine (i) heat supply per unit mass (ii)Thermal efficiency of the cycle. Also show the cycle on p-v and T-s diagram.	07
	(b)	Develop the equation of thermal efficiency for diesel cycle with usual notation.	07
Q.4	(a) (b)	Draw Schematic diagram, P-V and T-S diagram of Rankine cycle. Prove that "Entropy is a property of a system". OR	07 07
Q.4	(a)	Derive Maxwell relations and various TdS equations.	07
Ų.i	(b)	Write energy relations for various processes occurring in jet engine.	07
Q.5	(a)	Develop the equation of thermal efficiency for Brayton cycle with usual notation.	07
	(b)	Write all the major parts of Jet engine components with their functions. OR	07
Q.5	(a) (b)	Which cycle is associated with Jet engine? Draw its' P-V & T-S diagram. Explain heat pump, heat engine and refrigeration. justify that the COP of a heat pump is greater than the COP of Refrigerator by unity.	07 07
