Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(NEW) EXAMINATION - SUMMER 2023

Subject Code:3130109 Date:28-07-2023

Subject Name: Thermodynamics for Aeronautical Engineering

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

		r · · · · · · r · · · · · · · · · · · ·	
			MARKS
Q.1	(a)	Define: system, surrounding, boundary and universe.	03
	(b)	Explain Carnot cycle with P-V and T-s diagram.	04
	(c)	With the help of a neat diagram explain the working of a simple gas turbine plant (The Brayton Cycle).	07
Q.2	(a)	State the statements of second law of thermodynamics.	03
•	(b)	Explain the effect of superheating on Rankine cycle efficiency.	04
	(c)	Explain with neat sketches the working of four stroke petrol engine (Otto cycle) and represent its thermodynamic cycle on p-V and T-S diagram.	07
OR			
	(c)	Compare the efficiency of Otto cycle and Diesel cycle for same compression ratio and same heat addition.	07
Q.3	(a)	Define a thermodynamic system. Differentiate between open system, closed system and an isolated system.	03
	(b)	State first law of thermodynamics. Also define internal energy of the system and show that internal energy is a property of the system.	04
	(c)	A fluid at a pressure of 3 bar, and with specific volume of 0.18 m $3/kg$, contained in a cylinder behind a piston expands reversibly to a pressure of 0.6 bar according to a law, $P = C/V^2$, where C is a constant and V is a specific volume. Calculate the work done by the fluid on the piston.	07
OR			
Q.3	(a)	Write the applications of first law to steady flow process.	03
	(b)	In an internal combustion engine, during the compression stroke the heat rejected to the cooling water is 50kJ/kg and the work input is 100kJ/kg. Calculate the change in internal energy of the working fluid stating whether it is a gain or loss.	04
	(c)	Explain the steady flow energy equation for nozzle and boiler.	07
Q.4	(a)	What do you mean by the term 'Entropy'? Prove that entropy is a	03
ζ	(4)	property of a system.	00
	(b)	Derive an expression for the efficiency of the reversible heat engine.	04
	(c)	Two Carnot engines work in series between the source and sink temperatures of 550 K and 350 K. If both engines develop equal power determine the intermediate temperature.	07
OR			
Q.4	(a)	Derive the relation, Cp-Cv = R.	03
	(b)	For the following given differential equations, $du = Tds - pdv$	04

 $\left(\frac{\partial u}{\partial p}\right)_T = 0$ and $\left(\frac{\partial h}{\partial p}\right)_T = 0$.

Prove the following relations.

and dh = Tds + vdp, prove that for perfect gas equation,

 $\left(\frac{\partial T}{\partial p}\right)_{s} = \frac{Tv\beta}{c_{p}}$ and $\left(\frac{\partial T}{\partial v}\right)_{s} = -\frac{T\beta}{c_{v}K}$.

Q.5 (a) Write the limitations of Carnot vapour power cycle. 03 (b) Explain the concept of available and unavailable energy. When does 04 the system become dead? Write a short note on Rankine vapour power cycle. (Schematic (c) **07** diagram, p-V and T-s diagrams) OR (a) Enlist the components of jet engine and write their functions. 03 **Q.5** (b) Draw h-s diagram of diffuser and derive its efficiency equation. 04 Derive the expression of nozzle exit velocity and efficiency of nozzle **07**

used in a jet engine. On which law of thermodynamics it works?