Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (NEW) EXAMINATION – SUMMER 2022

•		Code:3130109 Date:15-0/-20	22
Subj	ect i	Name:Thermodynamics for Aeronautical Engineering	
Time	e:02	:30 PM TO 05:00 PM Total Marks:	70
Instru	ction		
	1.	Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	State and define different thermodynamic systems.	03
	(b)		04
	(c)	A steam enters a nozzle at a pressure of 7 bar and 200 °C and leaves at a pressure of 2 bar. The initial velocity of steam at the entrance is 50 m/s and exit velocity from nozzle is 750 m/s. the mass flow rate through the nozzle is 1500 kg/hr. the heat loss from the nozzle is 12000 KJ/hr. Determine final Enthalpy of steam and nozzle area if the specific volume is 1.25 m ³ /kg. take initial enthalpy 2850 KJ/kg.	07
Q.2	(a)	Show that the COP of a heat pump is greater than the COP of Refrigerator by unity.	03
	(b)	Write kelvin plank and Clausius statement of second law of thermodynamics with examples.	04
	(c)	Prove that entropy is property of system.	07
	(c)	OR Explain concept of exergy and its application.	07
Q.3	(a)	Define Steam rate, and Heat rate for Rankine cycle also write the equation for the same.	03
	(b)		04
	(c)	Derive Maxwell's equation and state their importance in thermodynamics. OR	07
Q.3	(a)	Sketch Rankine cycle on P-V, T-S and h-s diagram.	03
	(b)	Write comparison of Carnot and Rankine cycle	04
	(c)	Derive the first and second T ds equation and set up the expression for the difference in heat capacities C_p and C_v .	07
Q.4	(a)	State the application of heat exchanger in the field of engineering.	03
	(b)	<u> </u>	04
	(c)	Derive an equation for air standard efficiency of otto cycle.	07
		OR	
Q.4	(a)		03
		at the end of compression is 60°C and 450°C.determine air standard efficiency	
		and compression ratio.	
	(b)		04
		open cycle gas turbine plant?	۰
	(c)	Derive an air standard efficiency expression for Brayton cycle in terms of r_p and γ .	07
Q.5	(a)	Discuss perpetual motion machine of first kind.	03
•	(b)	± ±	04
	` /	refrigerator which having refrigeration capacity 1 tons and power Required to compressor is 0.8KW	

	(c)	Write down Jet engine components. Derive expression for component efficiency of any one component	07	
		OR		
Q.5 (a) Explain working principle of jet engine.		Explain working principle of jet engine.	03	
	(b)	Explain Reversible and Irreversible process with suitable examples.	04	
	(c)	Write energy relations for various processes occurring in jet engine.	07	
